Open Access
Issue
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
Article Number 01007
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202336601007
Published online 27 January 2023
  1. SJ Mazzullo. Overview of porosity evolution in carbonate reservoirs. Kansas Geological Society Bulletin, 79, 20-8 (2004) [Google Scholar]
  2. M Seyyedi, HKB Mahmud, M Verrall, A Giwelli, L Esteban, M Ghasemiziarani, B Clennell. Pore structure changes occur during CO2 injection into carbonate reservoirs. Sci Rep, 10, 3624 (2020) [CrossRef] [PubMed] [Google Scholar]
  3. A Giwelli, MZ Kashim, MB Clennell, L Esteban, RRP Noble, C White, S Vialle, M Ghasemiziarani, M Myers, S. Md Shah Salwani. CO2-brine injectivity tests in high CO2 content carbonate field, Sarawak basin, offshore East Malaysia. In proceedings of: The 2018 International Symposium of the Society of Core Analysts, Trondheim, Norway, (2018) [Google Scholar]
  4. M. Khather, A. Saeedi, R. Rezaee, R.R.P. Noble, D. Gray. Experimental investigation of changes in petrophysical properties during CO2 injection into dolomite-rich rocks. International Journal of Greenhouse Gas Control, 59, 74-90 (2017) [CrossRef] [Google Scholar]
  5. P. Mahzari, AP. Jones, EH. Oelkers. An integrated evaluation of enhanced oil recovery and geochemical processes for carbonated water injection in carbonate rocks. J Petrol Sci Eng, 181, (2019) [Google Scholar]
  6. ME. Amin, AY. Zekri, R. Almehaideb, H. Al-Attar. Optimization of CO2 WAG processes in a selected carbonate reservoir-An experimental Approach. SPE161782-MS. In proceedings of: Abu Dhabi International Petroleum Conference and Exhibition, Abu Dhabi, UAE, (2012) [Google Scholar]
  7. M. Motealleh, R. Kharrat, A. Hashemi. An Experimental investigation of water-alternating-CO2 coreflooding in a carbonate oil reservoir in different initial core conditions. Energy Sources, Part A: Recovery Utilization and Environmental Effects, 35, 1187-96 (2013) [CrossRef] [Google Scholar]
  8. IM. Mohamed, J. He, HA. Nasr-El-Din. Experimental analysis of CO2 injection on permeability of vuggy carbonate aquifers. J Energ Resour-Asme, 135, (2013) [CrossRef] [PubMed] [Google Scholar]
  9. AY. Zekri, SA. Shedid, RA. Almehaideb. Experimental investigations of variations in petrophysical rock properties due to carbon dioxide flooding in oil heterogeneous low permeability carbonate reservoirs. J Pet Explor Prod Te, 3, 265-77 (2013) [CrossRef] [Google Scholar]
  10. E. Liteanu, CJ. Spiers, CJ. Peach, AN. Obdam. Effect of CO2 injection on compaction of carbonate rocks. In proceedings of: American Geophysical Union, Fall Meeting 2006, (2006) [Google Scholar]
  11. S Touray. Effect of water alternating gas injection on ultimate oil recovery. Masters of Engineering, Petroleum Engineering, Dalhousie University, (2013) [Google Scholar]
  12. G.J. Pariani, K.A. McColloch, S.L. Warden, D.R. Edens. An approach to optimize economics in a West Texas CO2 flood. J Pet Technol (SPE-22022-PA), 44, 984-1025 (1992) [CrossRef] [Google Scholar]
  13. D.M. Malcolm, S.M. Frailey, A.S. Lawal. New approach to CO2 flood: Soak alternating gas (SPE-70023-MS). In proceedings of: The SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas, (2001) [Google Scholar]
  14. Xg. Xu and A. Saeedi. Evaluation and optimization study on a hybrid EOR technique named as chemicalalternating-foam floods. Oil Gas Sci Technol Rev IFP Energies nouvelles, 72, (2017) [Google Scholar]
  15. BH. Caudle and AB. Dyes. Improving miscible displacement by gas-water injection. T Am I Min Met Eng, 213, 281-4 (1958) [Google Scholar]
  16. MM. Kulkarni and DN. Rao. Experimental investigation of miscible and immiscible Water-Alternating-Gas (WAG) process performance. J Petrol Sci Eng, 48, 1-20 (2005) [CrossRef] [Google Scholar]
  17. JR. Christensen, EH. Stenby, A. Skauge. Review of WAG field experience. Spe Reserv Eval Eng, 4, 97-106 (2001) [CrossRef] [Google Scholar]
  18. E. Fernandez Righi, J. Royo, P. Gentil, R. Castelo, A. Del Monte, S. Bosco. Experimental study of tertiary immiscible WAG injection. SPE-89360-MS. In proceedings of: The SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, (2004) [Google Scholar]
  19. S. Afzali, N. Rezaei, S. Zendehboudi. A comprehensive review on enhanced oil recovery by Water Alternating Gas (WAG) injection. Fuel, 227, 218-46 (2018) [CrossRef] [Google Scholar]
  20. M. Khather, A. Saeedi, R. Rezaee, R.R.P. Noble. Experimental evaluation of carbonated brine-limestone The 34th International Symposium of the Society of Core Analysts interactions under reservoir conditions-emphasis on the effect of core scale heterogeneities. International Journal of Greenhouse Gas Control, 68, 128-45 (2018) [CrossRef] [Google Scholar]
  21. C McPhee, J Reed, I Zubizarreta. Core Analysis: A Best Practice Guide. Elsevier (2015) [Google Scholar]
  22. M. Khather, A. Saeedi, M.B. Myers, M. Verrall. An experimental study for carbonate reservoirs on the impact of CO2-EOR on petrophysics and oil recovery. Fuel, 235, 1019-38 (2019) [CrossRef] [Google Scholar]
  23. L.E. Treiber and W.W. Owens. A laboratory evaluation of the wettability of fifty oil-producing reservoirs (SPE3526-PA). SPE Journal, 12, 531-40 (1972) [Google Scholar]
  24. CN Fredd and HS Fogler. Influence of transport and reaction on wormhole formation in porous media. AIChE Journal, 44, 1933-49 (1998) [CrossRef] [Google Scholar]
  25. CN Fredd and HS Fogler. Optimum conditions for wormhole formation in carbonate porous media: Influence of transport and reaction. SPE Journal, 4, 196-205 (1999) [CrossRef] [Google Scholar]
  26. F Golfier, C Zarcone, B Bazin, R Lenormand, D Lasseux, M Quintard. On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J Fluid Mech, 457, 213-54 (2002) [CrossRef] [Google Scholar]
  27. ML Hoefner and HS Fogler. Pore evolution and channel formation during flow and reaction in porous media. AIChE Journal 34(1), (1998) [Google Scholar]
  28. S Vialle, J Dvorkin, G Mavko. Implications of pore microgeometry heterogeneity for the movement and chemical reactivity of CO2 in carbonates. Geophysics, 78, L69-L86 (2013) [CrossRef] [Google Scholar]
  29. S Vialle, S Contraires, B Zinzsner, JB Clavaud, K Mahiouz, P Zuddas, M Zamora. Percolation of CO2-rich fluids in a limestone sample: Evolution of hydraulic, electrical, chemical, and structural properties. J Geophys Res-Sol Ea, 119, 2828-47 (2014) [CrossRef] [Google Scholar]
  30. RS Arvidson, IE Ertan, JE Amonette, A Luttge. Variation in calcite dissolution rates: A fundamental problem? Geochimica Et Cosmochimica Acta, 67, 1623-34 (2003) [CrossRef] [Google Scholar]
  31. CI Steefel and K Maher. Fluid-rock interaction: A reactive transport approach. Rev Mineral Geochem, 70, 485-532 (2009) [CrossRef] [Google Scholar]
  32. Y. Kovalyshen, Banks S., A. Giwelli. Measurement of rock strain using Fiber Bragg Grating sensors. In proceedings of: The 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, Washington, USA, (2018) [Google Scholar]
  33. B. da Silva Falcão, L. Esteban, A. Giwelli, Y. Kovalyshen, S. Banks, A. Al-Yaseri, A. Keshavarz, S. Iglauer. Monitoring fluid migration using in-situ nuclear magnetic resonance core flooding system integrated with fiber optic sensors: A proof of concept. In proceedings of: The 35th International Symposium of the Society of Core Analysts (SCA Annual Symposium), Online Event, (2021) [Google Scholar]
  34. M. Khather, A. Saeedi, MB. Myers, A. Giwelli. Effects of CO2-saturated brine on the injectivity and integrity of Chalk reservoirs. Transport Porous Med, 135, 735-51 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.