Open Access
Issue |
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/202336601019 | |
Published online | 27 January 2023 |
- N. Morrow, and J. Buckley, Improved oil recovery by low-salinity waterflooding. Journal of petroleum Technology, 63(05), pp.106-112, SPE-129421-JPT. (2011). [CrossRef] [Google Scholar]
- K.J. Webb, C.A. Black, H. Al-Ajeel, Low salinity oil recovery-log-inject-log. In SPE/DOE Symposium on Improved Oil Recovery, SPE-89379-MS. (2004). [Google Scholar]
- K.J. Webb, C.J.J Black, I.J. Edmonds, Low salinity oil recovery–The role of reservoir condition corefloods. In IOR 2005-13th European Symposium on Improved Oil Recovery (pp. cp-12). European Association of Geoscientists & Engineers. (2005). [Google Scholar]
- L. Moghadasi, P. Pisicchio, M. Bartosek, E. Braccalenti, P. Albonico, I. Moroni, R. Veschi, F. Masserano, S. Scagliotti, L. Del Gaudio, M. De Simoni, Laboratory investigation on synergy effect of low salinity-polymer water injection on sandstone porous media. In Offshore Mediterranean Conference and Exhibition, OMC-20190868. (2019). [Google Scholar]
- E. Alagic, A. Skauge, Combined low salinity brine injection and surfactant flooding in mixedwet sandstone cores. Energy & fuels, 24(6), pp.3551-3559. (2010). [CrossRef] [Google Scholar]
- T.W. Teklu, W. Alameri, H. Kazemi, R.M. Graves, A.M. AlSumaiti, Low salinity water–Surfactant–CO2 EOR. Petroleum, 3(3), pp.309-320. (2017). [CrossRef] [Google Scholar]
- M.T. Al-Murayri, H.E. Al-Mayyan, K. Moudi, F. AlAjmi, D. Pitts, M.J. Wyatt, K. French, J. Surtek, E. Dean, Chemical EOR Economic Evaluation in a Low Oil Price Environment: Sabriyah Lower Burgan Reservoir Case Study. In SPE EOR Conference at Oil and Gas West Asia, SPE-190337-MS. (2018). [Google Scholar]
- H. Muriel, S. Ma, S.J.D. Sofla, L.A. James, Technical and Economical Screening of Chemical EOR Methods for the Offshore. In Offshore Technology Conference, OTC-30740-MS. (2020). [Google Scholar]
- H. Jiang, L. Nuryaningsih, H. Adidharma, The effect of salinity of injection brine on water alternating gas performance in tertiary miscible carbon dioxide flooding: experimental study. In SPE Western Regional Meeting, SPE-132369-MS. (2010). [Google Scholar]
- R. Ramanathan, A.M. Shehata, H.A. Nasr-El-Din, Water Alternating CO2 Injection Process-Does Modifying the Salinity of Injected Brine Improve Oil Recovery?. In OTC Brasil, OTC-26253-MS. (2015). [Google Scholar]
- A.A. AlQuraishi, A.M. Amao, N.I. Al-Zahrani, M.T. AlQarni, S.A. AlShamrani, Low salinity water and CO2 miscible flooding in Berea and Bentheimer sandstones. Journal of King Saud University-Engineering Sciences, 31(3), pp.286-295. (2019). [CrossRef] [Google Scholar]
- N.R. Morrow, G.Q. Tang, M. Valat, X. Xie, Prospects of improved oil recovery related to wettability and brine composition. Journal of Petroleum science and Engineering, 20(3-4), pp.267-276. (1998). [CrossRef] [Google Scholar]
- N.R. Morrow, Wettability and its effect on oil recovery. Journal of petroleum technology, 42(12), pp.1476-1484. (1990). [CrossRef] [Google Scholar]
- H. Al-Abri, P. Pourafshary, N. Mosavat, H. Al Hadhrami, A study of the performance of the LSWA CO2 EOR technique on improvement of oil recovery in sandstones. Petroleum, 5(1), pp.58-66. (2019). [CrossRef] [Google Scholar]
- T.W. Teklu, W. Alameri, R.M. Graves, H Kazemi, A.M. AlSumaiti, Low-salinity water-alternating-CO2 flooding enhanced oil recovery: theory and experiments. In Abu Dhabi International Petroleum Exhibition and Conference, SPE-171767-MS. (2014). [Google Scholar]
- R.M. Enick, S.M. Klara, CO2 solubility in water and brine under reservoir conditions. Chemical Engineering Communications, 90(1), pp.23-33. (1990). [CrossRef] [Google Scholar]
- Y.K. Li, L.X. Nghiem, Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and Henry’s law. The Canadian Journal of Chemical Engineering, 64(3), pp.486-496. (1986). [CrossRef] [Google Scholar]
- K.R Chaturvedi, D. Ravilla, W. Kaleem, P. Jadhawar, T. Sharma, Impact of low salinity water injection on CO2 storage and oil Recovery for improved CO2 utilization. Chemical Engineering Science, 229, p.116127. (2021). [CrossRef] [Google Scholar]
- H. Zolfaghari, A. Zebarjadi, O. Shahrokhi, M.H. Ghazanfari, An experimental study of CO2-low salinity water alternating gas injection in sandstone heavy oil reservoirs. Iranian Journal of Oil & Gas Science and Technology, 2(3), pp.37-47. (2013). [Google Scholar]
- H.N. Al-Saedi, S.K. Al-Jaberi, R.E. Flori, W. Al-Bazzaz, Y. Long, A new design of low salinity-CO2-different chemical matters. In Abu Dhabi International Petroleum Exhibition & Conference, SPE-197118-MS. (2019). [Google Scholar]
- H.N. Al-Saedi, R.E. Flori, Novel coupling smart waterCO2 flooding for sandstone reservoirs. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 60(04), pp.525-535. (2019). [CrossRef] [Google Scholar]
- H.N. Al-Saedi, Y. Long, R.E. Flori, B. Bai, Coupling smart seawater flooding and CO2 flooding for sandstone reservoirs: smart seawater alternating CO2 flooding (SMSW-AGF). Energy & Fuels, 33(10), pp.9644-9653. (2019). [CrossRef] [Google Scholar]
- L.W. Holm, V.A. Josendal, Mechanisms of oil displacement by carbon dioxide. Journal of petroleum Technology, 26(12), pp.1427-1438. (1974). [CrossRef] [Google Scholar]
- M.S.A. Perera, R.P. Gamage, T.D. Rathnaweera, A.S. Ranathunga, A. Koay, X. Choi, A review of CO2enhanced oil recovery with a simulated sensitivity analysis. Energies, 9(7), p.481. (2016). [CrossRef] [Google Scholar]
- C. Drummond, J. Israelachvili, Surface forces and wettability. Journal of Petroleum Science and Engineering, 33(1-3), pp.123-133. (2002). [CrossRef] [Google Scholar]
- J.J. Sheng, Critical review of low-salinity waterflooding. Journal of Petroleum Science and Engineering, 120, pp.216-224. (2014). [CrossRef] [Google Scholar]
- P.P. Jadhunandan, N.R. Morrow, Effect of wettability on waterflood recovery for crude-oil/brine/rock systems. SPE reservoir engineering, 10(01), pp.40-46, SPE22597-PA. (1995). [CrossRef] [Google Scholar]
- A. Lager, K.J. Webb, C.J.J. Black, Impact of brine chemistry on oil recovery. In IOR 2007-14th European symposium on improved oil recovery (pp. cp-24). European Associ. of Geoscientists & Engineers. (2007). [Google Scholar]
- D.J. Ligthelm, J. Gronsveld, J. Hofman, N. Brussee, F. Marcelis, H. van der Linde, Novel waterflooding strategy by manipulation of injection brine composition. In EUROPEC/EAGE conference and exhibition, SPE119835-MS. (2009). [Google Scholar]
- R.T. Johansen, H.N. Dunning, Relative wetting tendencies of crude oils by capillarimetric method, 5752. US Department of the Interior, Bureau of Mines. (1961). [Google Scholar]
- J.W. Graham, J.G. Richardson, Theory and application of imbibition phenomena in recovery of oil. Journal of Petroleum Technology, 11(02), pp.65-69. (1959). [CrossRef] [Google Scholar]
- N.R. Morrow, G. Mason, Recovery of oil by spontaneous imbibition. Current Opinion in Colloid & Interface Science, 6(4), pp.321-337. (2001). [CrossRef] [Google Scholar]
- L.E. Treiber, W.W. Owens, A laboratory evaluation of the wettability of fifty oil-producing reservoirs. Society of petroleum engineers journal, 12(06), pp.531-540, SPE-3526-PA. (1972). [CrossRef] [Google Scholar]
- J.P. Batycky, F.G. McCaffery, P.K. Hodgins, D.B. Fisher, Interpreting relative permeability and wettability from unsteady-state displacement measurements. Society of Petroleum Engineers Journal, 21(03), pp.296-308, SPE-9403-PA. (1981). [CrossRef] [Google Scholar]
- A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 40, pp.546-551. (1944). [CrossRef] [Google Scholar]
- N. Siemons, H. Bruining, H. Castelijns, K.H. Wolf, Pressure dependence of the contact angle in a CO2– H2O – coal system. Journal of colloid and interface science, 297(2), pp.755-761. (2006). [CrossRef] [PubMed] [Google Scholar]
- E. Sripal, L.A. James, Application of an optimization method for the restoration of core samples for SCAL experiments. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 59(01), pp.72-81. (2018). [CrossRef] [Google Scholar]
- E. Sripal, D. Grant, L. James, Application of SEM Imaging and MLA Mapping Method as a Tool for Wettability Restoration in Reservoir Core Samples for SCAL Experiments. Minerals, 11(3), p.285. (2021). [CrossRef] [Google Scholar]
- W. Anderson, Wettability literature survey-part 2: Wettability measurement. Journal of petroleum technology, 38(11), pp.1246-1262. (1986). [CrossRef] [Google Scholar]
- M. Arif, S.A. Abu-Khamsin, S. Iglauer, Wettability of rock/CO2/brine and rock/oil/CO2-enriched-brine systems: Critical parametric analysis and future outlook. Advances in colloid and interface science, 268, pp.91113. (2019). [CrossRef] [PubMed] [Google Scholar]
- N.S. Kaveh, E.S.J. Rudolph, P. Van Hemert, W.R. Rossen, K.H. Wolf, Wettability evaluation of a CO2/water/bentheimer sandstone system: contact angle, dissolution, and bubble size. Energy & Fuels, 28(6), pp.4002-4020. (2014). [CrossRef] [Google Scholar]
- S.J.D. Sofla, L.A. James, Y. Zhang, Toward a mechanistic understanding of wettability alteration in reservoir rocks using silica nanoparticles. In E3S Web of Conferences, 89, p. 03004. EDP Sciences. (2019). [CrossRef] [EDP Sciences] [Google Scholar]
- P.T. Jaeger, M.B. Alotaibi, H.A. Nasr-El-Din, Influence of compressed carbon dioxide on the capillarity of the gas− crude oil− reservoir water system. Journal of Chemical & Engineering Data, 55(11), pp.5246-5251. (2010). [CrossRef] [Google Scholar]
- A. Ameri, N.S. Kaveh, E.S.J. Rudolph, K.H. Wolf, R. Farajzadeh, J. Bruining, Investigation on interfacial interactions among crude oil–brine–sandstone rock– CO2 by contact angle measurements. Energy & fuels, 27(2), pp.1015-1025. (2013). [CrossRef] [Google Scholar]
- D.N. Espinoza, J.C. Santamarina, Water ‐ CO2 ‐ mineral systems: Interfacial tension, contact angle, and diffusion — Implications to CO2 geological storage. Water resources research, 46(7). (2010). [CrossRef] [PubMed] [Google Scholar]
- M. Seyyedi, M. Sohrabi, A. Farzaneh, Investigation of rock wettability alteration by carbonated water through contact angle measurements. Energy & Fuels, 29(9), pp.5544-5553. (2015). [CrossRef] [Google Scholar]
- A.B. Dixit, S.R. McDougall, K.S. Sorbie, J.S. Buckley, Pore scale modelling of wettability effects and their influence on oil recovery. In SPE/DOE Improved Oil Recovery Symposium, SPE-35451-MS. (1996). [Google Scholar]
- S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments. Mech. Engineering, 75, pp.38. (1953). [Google Scholar]
- S. Li, M. Liu, D. Hanaor, Y. Gan, Dynamics of viscous entrapped saturated zones in partially wetted porous media. Transport in Porous Media, 125(2), pp.193-210. (2018). [CrossRef] [Google Scholar]
- H. Ding, S. Rahman, Experimental and theoretical study of wettability alteration during low salinity water flooding-an state of the art review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, pp.622-639. (2017). [CrossRef] [Google Scholar]
- S.Y. Lee, K.J. Webb, I.R. Collins, A. Lager, S.M. Clarke, M. O’Sullivan, A.F. Routh, X. Wang, Low salinity oil recovery–Increasing understanding of the underlying mechanisms. In SPE Improved Oil Recovery Symposium. SPE-129722-MS. (2010). [Google Scholar]
- Q. Xie, A. Saeedi, E. Pooryousefy, Y. Liu, Extended DLVO-based estimates of surface force in low salinity water flooding. Journal of Molecular Liquids, 221, pp.658-665. (2016). [CrossRef] [Google Scholar]
- A. Lager, K.J. Webb, C.J.J. Black, M. Singleton, K.S. Sorbie, Low salinity oil recovery-an experimental investigation. Petrophysics-The SPWLA Journal of Formation Evaluation and Res. Descrip. 49(01). (2008). [Google Scholar]
- H. Wang, J. Zeuschner, M. Eremets, I. Troyan, J. Willams, Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature. Scientific Reports, 6(1), pp.1-8. (2016). [CrossRef] [PubMed] [Google Scholar]
- B. Velde, Origin and mineralogy of clays: clays and the environment. Springer Sci. & Business Media. (2013) [Google Scholar]
- P.L McGuire, J.R. Chatham, F.K. Paskvan, D.M. Sommer, F.H. Carini, Low salinity oil recovery: An exciting new EOR opportunity for Alaska’s North Slope. SPE-93903-MS. (2005). [Google Scholar]
- C.A. Miller, K.H. Raney, Solubilization emulsification mechanisms of detergency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 74(2-3), pp.169-215. (1993). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.