Open Access
Issue
E3S Web Conf.
Volume 367, 2023
The 2022 International Symposium of the Society of Core Analysts (SCA 2022)
Article Number 01001
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202336701001
Published online 31 January 2023
  1. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. MoufoumaOkia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield. IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In press. [Google Scholar]
  2. A. Simone, E. Mackie and N. Jenvey, En. Proced. 1, GHGT-9, 2219-2226, (2009). [CrossRef] [Google Scholar]
  3. S. D. Hovorka, En. Proced. 114, GHGT-13, 3754-3756, (2017). [CrossRef] [Google Scholar]
  4. M. Smith, D. Campbell, E. Mckay, and D. Polson, CO2 aquifer storage site evaluation and monitoring. HerriotWatt University, Edinburgh (2011). [Google Scholar]
  5. S. Carrol, K. Mansoor, X. Yang, T. A. Buscheck and Y. Sun. En. Proced. 114, GHGT-13, 3628-3635, (2017). [CrossRef] [Google Scholar]
  6. K. Yamamoto. CO2SC Symposium. 26-28, (2006). [Google Scholar]
  7. J. Desroches, L. Jammes, and T. Berard. CO2SC Symposium. 238-241, (2006). [Google Scholar]
  8. S. Bachu and B. Bennion. CO2SC Symposium. 193-195, (2006). [Google Scholar]
  9. DOE-NETL, BEST PRACTICES: Site Screening, Site Selection, and Site Characterization for Geologic Storage Projects (2017). DOE/NETL-2017/1844. [Google Scholar]
  10. J. Rutqvist, J. Birkholzer, and C.F. Tsang. CO2SC Symposium. 230-232, (2006). [Google Scholar]
  11. DOE-NETL, BEST PRACTICES: Risk Management and Simulation for Geologic Storage Projects (2017). DOE/NETL-2017/1846 [Google Scholar]
  12. R. Pini, S. Krevor. Chapter 7-Laboratory studies to understand controls on Flow and Transport for CO2 storage. Editors, P. Newell, A. G. Ilgen. Science of Carbon Storage in Deep Saline Formations. Elsevier, pp 145-180, (2019). [CrossRef] [Google Scholar]
  13. B. Dupuy, A. Romdhane, P. Eliasson, H. Yan. Combined geophysical and rock physics workflow for quantitative CO2 monitoring. International Journal of Greenhouse Gas Control, 106, 103217, (2021). [CrossRef] [Google Scholar]
  14. Z. Xue, T. Ohsumi, H. Koide. An experimental study on seismic monitoring of a CO2 flooding in two sandstones. Energy, 30, 2352-2359, (2005). [CrossRef] [Google Scholar]
  15. A. JafarGandomi, A. Curtis. Assesing the monitorability of CO2 saturation in subsurface saline aquifers. International Journal of Greenhouse Gas Control. 7. pp 244-260.(2012) [CrossRef] [Google Scholar]
  16. V. Vilarrasa, R.Y. Makhnenko, J. Rutqvist, Chapter 9 Field and Laboratory Studies of Geomechanical Response to the Injection of CO2, Editor(s): P. Newell, A. G. Ilgen, Science of Carbon Storage in Deep Saline Formations, pp 209-236, Elsevier, (2019). [CrossRef] [Google Scholar]
  17. M. Gutierrez, D. Katsuki, A. Almarabat. Seismic velocity change in sandstone during CO2 injection. E3S Web of Conferences, 205, ICEGT (2020). [Google Scholar]
  18. J. Kim, T. Matsuoka, Z. Xue. Monitoring and detecting CO2 injected into water-satuated sandstone with joint seismic and resistivity measurements. Exploration Geophysics, 42, 58–68, (2011). [CrossRef] [Google Scholar]
  19. I. Falcon-Suarez, H. Marin-Moreno, F. Browning, A. Lichtschlag, K. Robert, L. J. North, A.I. Best. Experimental assesment of pore fluid distribution and geomechanical changes in saline sandstone réservoirs during and after CO2 injection. [Google Scholar]
  20. T. Tsuji, T. Ikeda, F. Jiang. Hydrologic and elastic properties of CO2 injected rock at various reservoir conditions : Insight into quantitative monitoring of injected CO2. En. Proced. 114, GHGT-13, 4047-4055, (2017). [CrossRef] [Google Scholar]
  21. H. Ott, S. Berg, S. Oedai. Displacement and mass transfer of CO2/Brine in sandstone. International Symposium of Society of Core Analysts. SCA2011-05. (2011). [Google Scholar]
  22. M.Z. Kalam, K.Al. Hammadi, O.B. Wilson, M. Dernaika and H. Samosir. Importance of porous plate measurements on carbonates at peseudo reservoir conditions. International Symposium of Society of Core Analysts. SCA2006-28, (2006). [Google Scholar]
  23. D.G. Longeron, M.J. Argaud and L. Bouvier. Resistivity Index and capillary pressure measurements under reservoir conditions using crude oil. 64th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. (1989). [Google Scholar]
  24. Richard Rosen, William Mickelson, Munir Sharf-Aldin, Basak Kurtoglu, Tobi Kosanke Meghana PaiAngle, Robert Patterson, Faraz Mir, Santhosh Narasimhan, and Amir Amini. Impact of Exp Studies on Unconventional Mechanisms.SPE-168965. SPE Unconventional Resources Conference – USA held in The Woodlands, Texas, USA, 1-3 April, (2014). [Google Scholar]
  25. G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. pp 266-339. (2009). [CrossRef] [Google Scholar]
  26. D. Gokaraju, M. Aldin, A. Thombare, A. Mitra, S. Govindarajan, R. Patterson. A novel method for experimental characterization of the Poroelastic Constants in Unconventional formations.URTeC :2902907, (2018). [Google Scholar]
  27. V. Mikhaltsevitch, M. Lebedev, and Boris Gurevich. Measurements of the elastic and anelastic properties of sandstone flooded with supercritical CO2. Geophysical Prospecting, 62, pp 1266–1277, (2014). [CrossRef] [Google Scholar]
  28. J. W. Dudley, M. Brignoli, B. R. Crawford, R. T. Ewy, D. K. Love, J. D. McLennan, G. G. Ramos, J. L. Shafer, M. H. Sharf-Aldin, E. Siebrits, J. Boyer, M. A. Chertov. ISRM Suggested Method for Uniaxial-Strain Compressibility Testing for Reservoir Geomechanics. Rock Mech Rock Eng 49, pp 4153-4178, (2016). [CrossRef] [Google Scholar]
  29. S. Govindarajan, M. Aldin, A. Guedez, A. Thombare, D. Gokaraju, A. Mitra, R. Patterson. Experimental Investigation for Selection of Unloading Criterion in Multistage Triaxial Testing. ARMA 21–1217, 55th US Rock Mechanics/Geomechanics Symposium held in Houston, Texas, USA, 20-23 June 2021. (2021). [Google Scholar]
  30. R. Span and W. Wagner. A new equation of state for CO2 covering the fluid region from the triple point temperature to 1100K at pressures upto 800MPa. J. Phys. Chem. Ref. Data Vol. 25, No 6 (1996). [Google Scholar]
  31. M. Batzle and Z. Wang. Seismic properties of pore fluids. GEOPHYSICS, VOL. 57, NO. 11 P. 1396-1408 (1992). [CrossRef] [Google Scholar]
  32. P.J. Linstrom and W.G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303, (retrieved July 4, 2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.