Open Access
Issue |
E3S Web Conf.
Volume 371, 2023
International Scientific Conference “Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East” (AFE-2022)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 6 | |
Section | Innovations in Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202337103007 | |
Published online | 28 February 2023 |
- A. Madaan, A. Setlur, T. Parekh, B. Póczos, G. Neubig, Y. Yang, R. Salakhutdinov, A. W. Black, and S. Prabhumoye, “Politeness transfer: A tag and generate approach,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL (2020) https://doi.org/10.18653/v1/2020.acl-main.169 [Google Scholar]
- E. Hovy, Journal of Pragmatics 11 (6) (1987) https://doi.org/10.1016/0378-2166(87)90099-3 [Google Scholar]
- S. Rao, J. Tetreault, «Dear sir or madam, may I introduce the GYAFC dataset: Corpus, benchmarks and metrics for formality style transfer», in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 1 (2018) https://doi.org/10.18653/v1/N18-1012 [Google Scholar]
- E. Briakou, D. Lu, K. Zhang, J. Tetreault, «Olá, bonjour, salve! XFORMAL: A benchmark for multilingual formality style transfer», in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2021) https://aclanthology.org/2021.naacl-main.256 [Google Scholar]
- R. Pryzant, R. D. Martinez, N. Dass, S. Kurohashi, D. Jurafsky, D. Yang, «Automatically neutralizing subjective bias in text», in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 489 (2020) https://doi.org/10.1609/aaai.v34i01.5385 [Google Scholar]
- R. Lakoff, Language in Society 2 (1) (1973) [Google Scholar]
- C. Boulis, M. Ostendorf, «A quantitative analysis of lexical differences between genders in telephone conversations», in ACL 2005, 43rd Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (2005) https://doi.org/10.3115/1219840.1219894 [Google Scholar]
- P. Trudgill, Language in Society 1 (2) (1972) https://doi.org/10.1017/S0047404500000488 [Google Scholar]
- D. Tannen, Discourse Processes 13(1) (1990) https://doi.org/10.1080/01638539009544747 [Google Scholar]
- S. Argamon, M. Koppel, J. Fine, A. R. Shimoni, Text & Talk 23 (3) (2003) [Google Scholar]
- S. Prabhumoye, Y. Tsvetkov, R. Salakhutdinov, A. W. Black, «Style transfer through back-translation», in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics 1 (2018) https://doi.org/10.18653/v1/P18-1080 [Google Scholar]
- Y. Huang, W. Zhu, D. Xiong, Y. Zhang, C. Hu, F. Xu, «Cycle-consistent adversarial autoencoders for unsupervised text style transfer», in Proceedings of the 28th International Conference on Computational Linguistics, COLING (2020) https://doi.org/10.18653/v1/2020.coling-main.201 [Google Scholar]
- K. Zeng, M. Shoeybi, M. Liu, «Style example-guided text generation using generative adversarial transformers», CoRR, abs/2003.00674 (2020) [Google Scholar]
- T. Shen, T. Lei, R. Barzilay, T. Jaakkola, Advances in Neural Information Processing Systems (2017) [Google Scholar]
- R. He and J. J. McAuley, «Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering», in Proceedings of the 25th International Conference on World Wide Web, WWW (2016) https://doi.org/10.1145/2872427.2883037 [Google Scholar]
- M.Tran, Y. Zhang, and M. Soleymani, «Towards a friendly online community: An unsupervised style transfer framework for profanity redaction», CoRR, abs/2011, 00403 (2020) [Google Scholar]
- R. Voigt, D. Jurgens, V. Prabhakaran, D. Jurafsky, and Y. Tsvetkov, «RtGender: A corpus for studying differential responses to gender», in Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC (2018) [Google Scholar]
- S. Tan, N. Goonawardene, Journal of Medical Internet Research 19 (1) (2017) https://doi.org/10.2196/jmir.5729 [Google Scholar]
- Z. Zhu, D. Bernhard, I. Gurevych, «A monolingual tree-based translation model for sentence simplification», in COLING 2010, 23rd International Conference on Computational Linguistics, Proceedings of the Conference (2010) [Google Scholar]
- L. V. den Bercken, R. Sips, C. Lofi, «Evaluating neural text simplification in the medical domain»,in The World Wide Web Conference, WWW (2019) [Google Scholar]
- W. Weng, Y. Chung, P. Szolovits, «Unsupervised clinical language translation», in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD (2019) https://doi.org/10.1145/3292500.3330710 [Google Scholar]
- Y. Cao, R. Shui, L. Pan, M. Kan, Z. Liu, T. Chua, «Expertise style transfer: A new task towards better communication between experts and laymen», in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (2020) [Google Scholar]
- D. Jin, Z. Jin, Z. Hu, O. Vechtomova and R. Mihalcea, Computational Linguistics 48 (1) (2022) https://doi.org/10.1162/coli_a_00426 [Google Scholar]
- W. Xu, A. Ritter, B. Dolan, R. Grishman, C. Cherry, “Paraphrasing for style,” in COLING 2012, in 24th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers (2012) [Google Scholar]
- R. M. Mikherskii, Computer Optics 42 (1) (2018) https://doi.org/10.18287/2412-6179-2018-42-1-113-117 [CrossRef] [Google Scholar]
- R. M. Mikherskii, M. R. Mikherskii, IOP Conf. Ser.: Mater. Sci. Eng. 1069, 012025 (2021) https://doi.org/10.1088/1757-899X/1069/1/012025 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.