Open Access
Issue
E3S Web Conf.
Volume 371, 2023
International Scientific Conference “Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East” (AFE-2022)
Article Number 06001
Number of page(s) 8
Section Sustainable Territorial Development
DOI https://doi.org/10.1051/e3sconf/202337106001
Published online 28 February 2023
  1. M. Auli, J. Gao, 52nd Annual Meeting of the Association for Computational Linguistics 2, 136–42 (2014) [Google Scholar]
  2. M. Ballesteros, C. Dyer, N.A. Smith, Conference on Empirical Methods in Natural Language Processing, 349–59 (2015) [Google Scholar]
  3. M. Bansal, K. Gimpel, K. Livescu, 52nd Annual Meeting of the Association for Computational Linguistics 2, 809–15 (2014) [Google Scholar]
  4. A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey arXiv:1502.05767 (2015) [Google Scholar]
  5. Y. Bengio, Practical recommendations for gradient-based training of deep architectures arXiv:1206.5533 (2012) [Google Scholar]
  6. Y. Bengio, R. Ducharme, P. Vincent, C.J. Janvin, Mach. Learn. Res. 3, 1137–55 (2003) [Google Scholar]
  7. D. Chen, C. Manning, Conference on Empirical Methods in Natural Language Processing (EMNLP), 740–50 (2014) [Google Scholar]
  8. Y. Chen, L. Xu, K. Liu, D. Zeng, J. Zhao, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing 1, 167–76 (2015) [Google Scholar]
  9. P.V. Chetyrbok, Preliminary systemic decomposition of big data for their classification using vector criteria dynamic management model of innovations generations SCM, 762 – 764 (2017) [Google Scholar]
  10. A.N. Kazak, P.V. Chetyrbok, N.N. Oleinikov, IOP Conference Series: Earth and Environmental Science 421 (2020) [Google Scholar]
  11. N.I. Gallini, P.V. Chetyrbok, D.V. Gorobets, et al, 2021 IEEE Communication Strategies in Digital Society Seminar, 37–42 (2021) [Google Scholar]
  12. A.N. Kazak, N.N. Oleinikov, P.V. Chetyrbok et al, Journal of Physics: Conference Series 1703, 012034 (2020) https://doi.org/1703:012034 [CrossRef] [Google Scholar]
  13. Z. Doborjeh, N. Hemmington, M. Doborjeh, N. Kasabov, International Journal of Contemporary Hospitality Management 34, 1154–1176 (2021) https://doi.org/10.1108/IJCHM-06-2021-0767 [Google Scholar]
  14. D. Kaplun, A. Krasichkov, P. Chetyrbok et al, Mathematics 9(20), 2616 (2021) https://doi.org/10.3390/math9202616 [CrossRef] [Google Scholar]
  15. L. Genicot, World Journal of Nuclear Science and Technology 5(1) (2015) https://doi.org/10.4236/wjnst.2015.51003 [Google Scholar]
  16. A.N. Kazak, N.N. Oleinikov, R.R. Timirgaleeva, et al, AIP Conference Proceedings 2402, 070020 (2021) https://doi.org/10.1063/5.0071419 [CrossRef] [Google Scholar]
  17. A. Muller, S. Guido, An Introduction to Machine Learning with Python. A guide for data scientists (Williams, 2017) [Google Scholar]
  18. D. Vanderplas, Python for Complex Problems: Data Science and Machine Learning (Peter, St. Petersburg, 2018) [Google Scholar]
  19. J. Briggs, Python for kids. Programming tutorial, trans. from English (2017) [Google Scholar]
  20. S. Raska, Python and machine learning, transl. from English (DMK Press, M., 2017) [Google Scholar]
  21. California Renewable Production 2010–2018, URL: https://www.kaggle.com/datasets/cheedcheed/california-renewable-production–20102018. [Google Scholar]
  22. L. Ramalho, Python. To the heights of excellence (DMK Press, 2016) [Google Scholar]
  23. L.P. Coelho, W. Richard, Building Machine Learning Systems in Python. 2nd edition, trans. from English (DMK Press, M., 2016) [Google Scholar]
  24. O. Geron, Applied Machine Learning with Scikit-Learn and TensorFlow. Concepts, tools and techniques for creating intelligent systems (Williams, 2018) [Google Scholar]
  25. T. Hastie, R. Tibshirani, J. Friedman, Elements of Statistical Learning (Springer, 2009) [CrossRef] [Google Scholar]
  26. V.S. Simankov, P.Y. Buchatskiy, A.V. Shopin et al, 24th International Conference on Soft Computing and Measurements 9507152, 150–153 (2021) [Google Scholar]
  27. V.S. Simankov, P.Yu. Buchatskiy, A.V. Shopin et al, Proceedings of 2021 4th International Conference on Control in Technical Systems, 252–255 (2021) [Google Scholar]
  28. P.Y. Buchatskiy, S.V. Teploukhov, S.V. Onishchenko, International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2020 9112028 (2020) [Google Scholar]
  29. Z. Doborjeh, N. Hemmington, M. Doborjeh, N. Kasabov, International Journal of Contemporary Hospitality Management 34, 1154–1176 (2021) https://doi.org/10.1108/IJCHM-06-2021-0767 [Google Scholar]
  30. L. Genicot, World Journal of Nuclear Science and Technology 5(1) (2015) https://doi.org/10.4236/wjnst.2015.51003 [Google Scholar]
  31. M. Mijwil, A. Esen, A. Alsaadi, Overview of Neural Networks (2019) URL: https://www.researchgate.net/publication/323665827 [Google Scholar]
  32. E. Grossi, M. Buscema, Introduction to artificial neural networks European journal of gastroenterology & hepatology (2008) https://doi.org/10.1097/MEG.0b013e3282f198a0 [Google Scholar]
  33. P. Dell’Aversana, Artificial neural networks and deep learning. A simple overview (2019) URL: https://www.researchgate.net/publication/333263211 [Google Scholar]
  34. I. Cik, J. Magyar, M. Mach, N. Ferenčík, Reinforcement learning as a service (2020) URL: https://ieeexplore.ieee.org/document/9108716 [Google Scholar]
  35. R.M. Solow, Journal of Economics 70, 64–94 (1956) [Google Scholar]
  36. R.M. Solow, Proceedings of the Seventy-Fourth Annual Meeting of the American Economic Association 52, 76–86 (1962) [Google Scholar]
  37. A.M. Okun, Proceedings of the Business and Economic Statistics: Section American Statistical Association, 98–103 (2000) [Google Scholar]
  38. R. Entov, O. Lugovoy, Growth Trends in Russia After 1998 The Oxford Handbook of the Russian Economy, 132–61 (1998) [Google Scholar]
  39. J. Zou, Yi. Han, S. Sung-Sau, Overview of Artificial Neural Networks Methods in molecular biology, 14–22 (2009) [Google Scholar]
  40. H. Yu., B. Wilamowski, IEEE human system interaction conference, 109–152 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.