Open Access
Issue
E3S Web of Conf.
Volume 463, 2023
III International Conference on Improving Energy Efficiency, Environmental Safety and Sustainable Development in Agriculture (EESTE2023)
Article Number 01010
Number of page(s) 8
Section Sustainable Development in Agriculture
DOI https://doi.org/10.1051/e3sconf/202346301010
Published online 13 December 2023
  1. V.I. Kirushin Major challenges and issues in the agriculture, Zemledelie, 3, 3-7 (2019) [Google Scholar]
  2. M.C. Hunter, R.G. Smith, M.E. Schipanski, L.W. Atwood, D.A. Mortensen, Agriculture in 2050: recalibrating targets for sustainable intensification, Bioscience, 67, 386–391 (2017) [CrossRef] [Google Scholar]
  3. J. Gaffney, M Challender, K. Califf, K. Harden, Building bridges between agribusiness innovation and smallholder farmers: a review. Glob. Food Secur., 20, 60–65 (2019) [CrossRef] [Google Scholar]
  4. A.S. Yakovlev, O.A. Makarov, M.V. Evdokimova, S.S. Ogorodnikov, Land degradation and challenges of sustainable development, Eurasian soil science, 9, 1167- 1174 (2018) [Google Scholar]
  5. P.A. Chekmarev A.P. Korshunov, Agrochemical characteristics of soils in the Chuvash Republic, Zemledelie, 8, 24-289 (2020) [Google Scholar]
  6. Land degradation and desertification in Russia: Modern approaches to analyzing challenges and searching for solutions ( “Pero” Editing House, Moscow, 2019) [Google Scholar]
  7. E. Davidson, J. Galloway, N. Millar, А. Leach, N-related greenhouse gases in North America: innovations for a sustainable future, Curr. Opin. Environ. Sustain, 9–10, 1–8 (2014) [CrossRef] [Google Scholar]
  8. IPCC, Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (2019) [Google Scholar]
  9. R.S. Edelgeriev, Global climate and Russian soil: land desertification and degradation, institutional, infrastructural and technological adaptation measures (agriculture and forestry (ООО "MBA Editorial House", Мoscow, 2019) [Google Scholar]
  10. G.-J. Nabuurs, R. Mrabet, A. Abu Hatab, M. Bustamante, "Chapter 7: Agriculture, Forestry and Other Land Uses (AFOLU)" (PDF), Climate Change Mitigation of Climate Change, 750 (2022) [Google Scholar]
  11. M Sartori, G. Philippidis, E. Ferrari, P Borrelli, E. Lugato, L. Montanarella, and P Panagos, A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion, LAND USE POLICY, ISSN 0264-8377, 86, 299-312 (2019) [Google Scholar]
  12. G. Li, A. Zakari, V. Tawiah, Does environmental diplomacy reduce CO2 emissions? A panel group means analysis, Science of the Total Environment, 722, 137790 (2020) [CrossRef] [Google Scholar]
  13. A. Ortiz-Bobea, T.R. Ault, C.M. Carrillo, R.G. Chambers, D.B. Lobell, Anthropogenic climate change has slowed global agricultural productivity growth, Nat. Clim. Chang., 11, 306–312 (2021) [CrossRef] [Google Scholar]
  14. K Kulik., A. Barabanov, Yu. Zhdanov, Strategies to develop protective forestry in the Russian Federation for the period up to 2025 (Federal National Centre of Agroecology of the Russian Academy of Sciences, Volgograd, 2018) [Google Scholar]
  15. А. Ivanov, V.С. Stolbovoy, 4 per 1000 Initiative – a new global challenge for Russian soils, Bulletin of the V.V. Dokuchaev Soil Science Institute, 98, 185-202 (2019) [CrossRef] [Google Scholar]
  16. V. S. Stolbovoy, Regenerative agriculture and mitigation of climate change. Achievements of science and technology of the agricultural sector, 34, 7, 19-26 (2020) [Google Scholar]
  17. Land and climate change. Intergovernmental group on climate change 36 (2020) [Google Scholar]
  18. Y.T Gan, C. Liang, Q Chai, R.L. Lemke, C.A Campbell, R.P. Zentner, Improving farming practices reduces the carbon footprint of spring wheat production, Nat. Commun., 5, 13 (2014) [Google Scholar]
  19. A. Heinemeyer, N.P. McNamara, Comparing the closed static versus the closed dynamic chamber flux methodology: implications for soil respiration studies, Plant Soil.,145–151 (2011) [Google Scholar]
  20. S. Corsi, H. Muminjanov, Conservation agriculture: Training guide for extension agents and farmers in Eastern Europe and Central Asia. Rome, FAO, Food & Agriculture Org., 160 (2019) [Google Scholar]
  21. L.V Orlova, Conservation (carbon) agriculture as a way to provide for the food security of the country, Conservation agriculture, 22-25 (2023) [Google Scholar]
  22. A. Toigildin, L. Orlova, N. Trotz, World climate agenda. Conservation (carbon) agriculture as a standard of international and national strategies to preserve soils and agricultural carbon markets, International agricultural journal, 1, 421-441 (2022) [Google Scholar]
  23. M.E. Kragt, D.J. Pannell, M.J. Robertson, Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia. Agr Syst, 112, 27–37 (2012) [CrossRef] [Google Scholar]
  24. A. Djandarov, V Dridiger, The impact of the cultivation technology on the yields and economic efficiency of cultivating peas in the zone of unstable precipitation of the Stavropol, Bulletin of the Gorsk State Agriculture University, 59, 1, 20-26 (2022) [CrossRef] [Google Scholar]
  25. R. Minikajev, G. Saifiyeva, I. Manukova, Optimization of the main tillage in the grey forest rotation of the Predkamye region of theRepublic of Tatarstan, BIO Web of Conferences : International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2019), EDP Sciences, Kazan, 00066 (2020) [Google Scholar]
  26. O.E. Medvedeva, S.V. Solovyeva, A.V. Stetsenko, World climatic agenda: economic challenges for Russia due to the European carbon tax. Property rights in the Russian Federation, 2, 233, 39-52 (2021) [Google Scholar]
  27. ISO 14040: environmental management-life cycle assessment-principles and framework (2006) [Google Scholar]
  28. G. Coppola, M. Costantini, A. Fusi, L. Ruiz-Garcia, J. Bacenetti, Comparative life cycle assessment of conventional and organic hazelnuts production systems in Central Italy. Sci. Total Environ., 826, 154107 (2022) [CrossRef] [Google Scholar]
  29. S. Gonzalez-Garcia, F. Almeida, M.T. Moreira, M. Brandao, Evaluating the environmental profiles of winter wheat rotation systems under different management strategies, Sci. Total Environ., 770, 145270 (2021) [CrossRef] [Google Scholar]
  30. M.D. Rahman, S Aravindakshan, M Hoque, M.A. Rahman, M.A. Gulandaz, J. Rahman, M.T. Islam, Conservation tillage (CT) for climate-smart sustainable intensification: Assessing the impact of CT on soil organic carbon accumulation, greenhouse gas emission and water footprint of wheat cultivation in Bangladesh, Environ. Sustain. Indic., 10, 100106 (2021) [Google Scholar]
  31. Li Xiong, Farooq Shah, Wei Wu, Environmental and socio-economic performance of intensive farming systems with varying agricultural resource for maize production, Science of The Total Environment, ISSN 0048-9697, 850, 158030 (2022) [Google Scholar]
  32. G.I. Rabochev, V.G. Kutilkin, A.L Rabochev, Bioenergetic assessment of the technological processes in agriculture. Study guide, Samara, 112 (2004) [Google Scholar]
  33. A.V. Golubev, Eco-economic basis of agriculture, Monography (Kolos, Moscow, 2008) [Google Scholar]
  34. V.M. Volodin, R.F. Eremina, Evaluating the efficiency of agriculture based on bioenergetics principles, Zemledelije, 9, 50- 52 (1991) [Google Scholar]
  35. I.V Tyurin, Soil formation, fertility and nitrogen in soil science and agriculture, Soil science, 3, 1-17 (1956) [Google Scholar]
  36. А.М. Lykov, A.I. Yeskov, M.N. Novikov, Organic matter of croplands of Non- Blacksoil Zone, Russian Academy of Agricultural Sciences, 630 (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.