Open Access
Issue
E3S Web Conf.
Volume 464, 2023
The 2nd International Conference on Disaster Mitigation and Management (2nd ICDMM 2023)
Article Number 09002
Number of page(s) 8
Section New Technologies and Tools for Disaster Evaluation
DOI https://doi.org/10.1051/e3sconf/202346409002
Published online 18 December 2023
  1. Yang, R., Li, Y., Zeng, D. & Guo, P. Deep DIC: Deep learning-based digital image correlation for end-to- end displacement and strain measurement. J Mater Process Technol 302, (2022). [Google Scholar]
  2. Blikharskyy, Y., Kopiika, N., Khmil, R., Selejdak, J. & Blikharskyy, Z. Review of Development and Application of Digital Image Correlation Method for Study of Stress-Strain State of RC Structures. Applied Sciences (Switzerland) vol. 12 Preprint at https://doi.org/10.3390/app121910157 (2022). [Google Scholar]
  3. Górszczyk, J., Malicki, K. & Zych, T. Application of digital image correlation (DIC) method for road material testing. Materials 12, (2019). [Google Scholar]
  4. Wang, L., Bi, S., Lu, X., Gu, Y. & Zhai, C. Deformation measurement of high-speed rotating drone blades based on digital image correlation combined with ring projection transform and orientation codes. Measurement (Lond) 148, (2019). [Google Scholar]
  5. Pisonero, J. et al. A Comparative Study of 2D and 3D Digital Image Correlation Approaches for the Characterization and Numerical Analysis of Composite Materials. IEEE Access 9, 160675–160687 (2021). [CrossRef] [Google Scholar]
  6. Abdulqader, A. & Rizos, D. C. Advantages of using digital image correlation techniques in uniaxial compression tests. Results in Engineering 6, (2020). [Google Scholar]
  7. Banks, J. et al. Assessment of Digital Image Correlation as a method of obtaining deformations of a structure under fluid load. J Fluids Struct 58, 173–187 (2015). [CrossRef] [Google Scholar]
  8. del Rey Castillo, E., Allen, T., Henry, R., Griffith, M. & Ingham, J. Digital image correlation (DIC) for measurement of strains and displacements in coarse, low volume-fraction FRP composites used in civil infrastructure. Compos Struct 212, 43–57 (2019). [CrossRef] [Google Scholar]
  9. Hoult, N. A., Andy Take, W., Lee, C. & Dutton, M. Experimental accuracy of two dimensional strain measurements using Digital Image Correlation. Eng Struct 46, 718–726 (2013). [CrossRef] [Google Scholar]
  10. Fayyad, T. M. & Lees, J. M. Application of Digital Image Correlation to Reinforced Concrete Fracture. Procedia Materials Science 3, 1585–1590 (2014). [CrossRef] [Google Scholar]
  11. Kumar, S. L., Aravind, H. B. & Hossiney, N. Digital image correlation (DIC) for measuring strain in brick masonry specimen using Ncorr open source 2D MATLAB program. Results in Engineering 4, (2019). [Google Scholar]
  12. Ravanelli, R. et al. A new digital image correlation software for displacements field measurement in structural applications. in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives vol. 42 139–145 (International Society for Photogrammetry and Remote Sensing, 2017). [Google Scholar]
  13. Fuad Ab Ghani, A., Ali, M. B., Dhar Malingam, S. & Mahmud, J. Digital Image Correlation (DIC) Technique in Measuring Strain Using Opensource Platform Ncorr. https://www.researchgate.net/publication/309463775 (2016). [Google Scholar]
  14. Quanjin, M., Rejab, M. R. M., Halim, Q., Merzuki, M. N. M. & Darus, M. A. H. Experimental investigation of the tensile test using digital image correlation (DIC) method. in Materials Today: Proceedings vol. 27 757–763 (Elsevier Ltd, 2020). [CrossRef] [Google Scholar]
  15. Zhang, X., Shi, Y. & Li, Z. X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates. Compos B Eng 164, 524–536 (2019). [CrossRef] [Google Scholar]
  16. Lim, C., Jeong, Y., Limkantanyu, S. & Kwon, M. Strain Measuring of Composite Grid Using Digital Image Correlation. Advances in Materials Science and Engineering 2022, (2022). [CrossRef] [Google Scholar]
  17. Villarino, A., López-Rebollo, J. & Antón, N. Analysis of mechanical behavior through digital image correlation and reliability of pinus halepensis mill. Forests 11, 1–23 (2020). [Google Scholar]
  18. Dahl, K. B. & Malo, K. A. Planar strain measurements on wood specimens. Exp Mech 49, 575–586 (2009). [CrossRef] [Google Scholar]
  19. Thelanderson, S. & Larsen, H. J. Timber Engineering. (2003). [Google Scholar]
  20. Blaber, J., Adair, B. & Antoniou, A. Ncorr: OpenSource 2D Digital Image Correlation Matlab Software. Exp Mech 55, 1105–1122 (2015). [CrossRef] [Google Scholar]
  21. International, A. & indexed by mero, files. Standard Test Methods for Small Clear Specimens of Timber 1. [Google Scholar]
  22. Henriques, J., Xavier, J. & Andrade-Campos, A. Identification of Orthotropic Elastic Properties of Wood by a Synthetic Image Approach Based on Digital Image Correlation. Materials 15, (2022). [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.