Open Access
Issue
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
Article Number 01012
Number of page(s) 7
Section Symposium on Mechanical, Chemical, and Advanced Materials Engineering
DOI https://doi.org/10.1051/e3sconf/202346501012
Published online 18 December 2023
  1. [1] T. Lahtinen, P. Vilaça, P. Peura, and S. Mehtonen, “MAG Welding tests of modern high strength steels with minimum yield strength of 700 MPa,” Applied Sciences (Switzerland), vol. 9, no. 5, 2019, doi: 10.3390/app9051031. [Google Scholar]
  2. K. F. Amin and H. M. M. A. Rashed, “Steel Used in Construction Industries,” in Reference Module in Materials Science and Materials Engineering, Elsevier, 2019. doi: 10.1016/b978-0-12-803581-8.10270-x. [Google Scholar]
  3. T. Islam and H. M. M. A. Rashed, “Classification and Application of Plain Carbon Steels,” in Reference Module in Materials Science and Materials Engineering, Elsevier, 2019. doi: 10.1016/b978-0-12-803581-8.10268-1. [Google Scholar]
  4. Suheni, A. A. Rosidah, D. P. Ramadhan, T. Agustino, and F. F. Wiranata, “Effect of Welding Groove and Electrode Variation to the Tensile Strength and Macrostructure on 304 Stainless Steel and AISI 1045 Dissimilar Welding Joint Using SMAW Process,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Dec. 2021. doi: 10.1088/1742-6596/2117/1/012018. [Google Scholar]
  5. S. Triwanapong and K. Kimapong, “Effect of welding consumables on dissimilar AISI304/AISI1015 steels butt joint properties,” in Key Engineering Materials, Trans Tech Publications Ltd, 2018, pp. 344–349. doi: 10.4028/www.scientific.net/KEM.777.344. [CrossRef] [Google Scholar]
  6. N. Prasanna, A. Ramanathan, and N. Siva Shanmugam, “Investigation of welding of dissimilar high thickness SA106 Gr.C carbon steel andSA335P12 alloy steel to eradicate the failure in boiler components fabricated through SAW and SMAW processes,” Eng Fail Anal, vol. 149, Jul. 2023, doi: 10.1016/j.engfailanal.2023.107252. [CrossRef] [Google Scholar]
  7. C. Ye, G. Lu, Q. Liu, L. Ni, X. Wei, and X. Fang, “Microstructure and Mechanical Properties of 10CrNi3MoV Steel-SS304L Composite Bimetallic Plates Butt Joint by Shielded Metal Arc Welding,” J Mater Eng Perform, vol. 30, no. 3, pp. 2047– 2056, Mar. 2021, doi: 10.1007/s11665-021-05477-x. [CrossRef] [Google Scholar]
  8. O. Sabah Barrak, M. Helan Sar, A. Shakir Al-Adili, S. Khammass Hussein, and A. Khammass Hussein, “Study The Effect of Filer Material on Microstructure of Welding the Carbon Steel in Shielded Metal Arc Welding,” Journal of Mechanical Engineering Research and Developments, vol. 43, no. 3, pp. 408–416, 2020, [Online]. Available: https://www.researchgate.net/publication/341180577 [Google Scholar]
  9. Husaini, N. Ali, J. K. Hamza, and S. E. Sofyan, “Effects of welding on the change of microstructure and mechanical properties of low carbon steel,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jul. 2019. doi: 10.1088/1757-899X/523/1/012065. [Google Scholar]
  10. P. Hariprasath, P. Sivaraj, V. Balasubramanian, S. Pilli, and K. Sridhar, “Effect of welding processes on high cycle fatigue behavior for naval grade HSLA joints: A fatigue strength prediction,” Eng Fail Anal, vol. 142, Dec. 2022, doi: 10.1016/j.engfailanal.2022.106783. [CrossRef] [Google Scholar]
  11. A. Elsharif, A. El Abdelsalam, M. Ahmed, E. Hadiri, and N. S. Abdelwanis, “Investigating The Effect of SMAW Parameters on The Hardness of Commercial Carbon Steel,” International Jornal of Engineering Reserach & Technology, vol. 12, no. 01, pp. 48–53, 2023, doi: 10.17577/IJERTV12IS010023. [Google Scholar]
  12. S. Ambade, C. Tembhurkar, A. Patil, and D. B. Meshram, “Effect of number of welding passes on the microstructure, mechanical and intergranular corrosion properties of 409M ferritic stainless steel,” World Journal of Engineering, vol. 19, no. 3, pp. 368–374, May 2022, doi: 10.1108/WJE-11-2020-0591. [CrossRef] [Google Scholar]
  13. I. A. Pahlawan, A. A. Arifin, E. Marliana, and H. Irawan, “Effect of welding electrode variation on dissimilar metal weld of 316l stainless steel and steel ST41,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1757-899X/1010/1/012001. [Google Scholar]
  14. R. Chiong, N. Khandoker, S. Islam, and E. Tchan, “Effect of SMAW parameters on microstructure and mechanical properties of AISI 1018 low carbon steel joints: An experimental approach,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2019. doi: 10.1088/1757-899X/495/1/012093. [Google Scholar]
  15. N. A. Mohd-Lair, Y. Yuyut, Z. Ahmad, and A. M. Tahir, “SMAW: The Effects of Currents and Welding Rod Diameters on Welded Joint Ultimate Tensile Strength Using the Full Factorial DOE,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Dec. 2021. doi: 10.1088/1742-6596/2129/1/012071. [Google Scholar]
  16. D. Pathak, R. P. Singh, S. Gaur, and V. Balu, “Experimental investigation of effects of welding current and electrode angle on tensile strength of shielded metal arc welded low carbon steel plates,” in Materials Today: Proceedings, Elsevier Ltd, 2019, pp. 929–931. doi: 10.1016/j.matpr.2020.01.146. [Google Scholar]
  17. R. Ashari, A. Eslami, M. Shamanian, and S. Asghari, “Effect of weld heat input on corrosion of dissimilar welded pipeline steels under simulated coating disbondment protected by cathodic protection,” Journal of Materials Research and Technology, vol. 9, no. 2, pp. 2136–2145, Mar. 2020, doi: 10.1016/j.jmrt.2019.12.044. [CrossRef] [Google Scholar]
  18. U. S. Patil and M. S. Kadam, “Microstructural analysis of SMAW process for joining stainless steel 304 with mild steel 1018 and parametric optimization by using response surface methodology,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 1811–1815. doi: 10.1016/j.matpr.2020.12.008. [Google Scholar]
  19. N. Saini, R. Raghav, V. Bist, R. S. Mulik, and M. M. Mahapatra, “Microstructural features and mechanical properties of similar and dissimilar ferritic welded joints for ultra-supercritical power plants,” International Journal of Pressure Vessels and Piping, vol. 194, Dec. 2021, doi: 10.1016/j.ijpvp.2021.104556. [CrossRef] [Google Scholar]
  20. H. S. Kim et al., “Effects of heat treatment on mechanical properties and sensitization behavior of materials in dissimilar metal weld,” International Journal of Pressure Vessels and Piping, vol. 172, pp. 17–27, May 2019, doi: 10.1016/j.ijpvp.2019.03.009. [CrossRef] [Google Scholar]
  21. A. J. García-Lira, E. Curiel-Reyna, Y. Curiel-Razo, Lara-Guevara, and I. Rojas-Rodríguez, “Characterization of Dissimilar Welding between 304 Stainless Steel and Gray Iron Using Nickel Coated Electrode,” Materials Sciences and Applications, vol. 12, no. 12, pp. 614–621, 2021, doi: 10.4236/msa.2021.1212041. [CrossRef] [Google Scholar]
  22. P. D. Gosavi, K. K. Sarkar, S. K. Khunte, V. R. Pawar, and B. Basu, “Microstructure and mechanical properties correlation of weld joints of a high strength naval grade steel,” in Procedia Structural Integrity, Elsevier B.V., 2019, pp. 304– 313. doi: 10.1016/j.prostr.2019.05.038. [CrossRef] [Google Scholar]
  23. V. A. Setyowati, Suheni, F. Abdul, and S. Ariyadi, “Effect of welding methods for different carbon content of ss304 and ss304l materials on the mechanical properties and microstructure,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1757-899X/1010/1/012018. [Google Scholar]
  24. C. Civi and E. Iren, “The effect of welding on reliability of mechanical properties of AISI 1020 and AISI 6150 steel materials,” Revista de Metalurgia, vol. 57, no. 1, Jan. 2021, doi: 10.3989/REVMETALM.186. [Google Scholar]
  25. P. N. Narasimhan, S. Mehrotra, A. R. Raja, M. Vashista, M. Zaheer, and K. Yusufzai, “ScienceDirect Development of hybrid welding processes incorporating GMAW and SMAW,” 2019. [Online]. Available: www.sciencedirect.com [Google Scholar]
  26. S. Mahajan and R. Chhibber, “Investigations on dissimilar welding of P91/SS304L using Nickel-based electrodes,” Materials and Manufacturing Processes, vol. 35, no. 9, pp. 1010–1023, Jul. 2020, doi: 10.1080/10426914.2020.1755041. [CrossRef] [Google Scholar]
  27. B. K. Khamari, S. S. Dash, S. K. Karak, and B. B. Biswal, “Effect of welding parameters on mechanical and microstructural properties of GMAW and SMAW mild steel joints,” Ironmaking and Steelmaking, vol. 47, no. 8, pp. 844–851, Sep. 2020, doi: 10.1080/03019233.2019.1623592. [CrossRef] [Google Scholar]
  28. A. A. Kumar Yadav, A. Kumar, C. Pratap, N. Singh, K. Singh, and M. Sachchida Nand, “STUDIES ON IMPACT OF WELDING PARAMETERS ON ANGULAR DISTORTION AND MECHANICAL PROPERTIES OF STRUCTURAL STEEL WELDED BY SMAW,” International Research Journal of Modernization in Engineering Technology and Science, vol. 2, no. 5, pp. 445– 459, May 2020, [Online]. Available: www.irjmets.com [Google Scholar]
  29. A. S. Abdel-Wanees, T. S. Mahmoud, and I. M. Ibrahim, “Effect of Electrode Material on Microstructural and Mechanical Characteristics of AISI 304 Stainless Steels Plates Joined Using Shielded Metal Arc Welding,” ENGINEERING RESEARCH JOURNAL (ERJ), vol. 1, no. 44, pp. 1–4, Apr. 2020. [Google Scholar]
  30. S. Ambade, C. Tembhurkar, A. P. Patil, P. Pantawane, and R. P. Singh, “Shielded metal arc welding of AISI 409M ferritic stainless steel: study on mechanical, intergranular corrosion properties and microstructure analysis,” World Journal of Engineering, vol. 19, no. 3, pp. 266–273, May 2022, doi: 10.1108/WJE-03-2021-0146. [CrossRef] [Google Scholar]
  31. M. I. Qazi, R. Akhtar, M. Abas, Q. S. Khalid, A. R. Babar, and C. I. Pruncu, “An integrated approach of GRA coupled with principal component analysis for multi-optimization of shielded metal arc welding (SMAW) process,” Materials, vol. 13, no. 16, Aug. 2020, doi: 10.3390/MA13163457. [Google Scholar]
  32. M. A. Mat Shah, F. H. Rosli, B. Abdullah, S. K. Alias, G. Hamami, and M. N. Halmy, “Effect of different preheating‟s temperature towards the integrity of weldment AISI 1045,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/834/1/012070. [Google Scholar]
  33. M. Mazni et al., “Effect of welding preheats on metallurgical analysis and microstructural development,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/834/1/012045. [Google Scholar]
  34. K. A. Rahangmetan, C. W. Wullur, and F. Sariman, “Effect Variations and Types of Smaw Welding Electrodes on A36 Steel to Tensile Test,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jul. 2020. doi: 10.1088/1742-6596/1569/3/032052. [Google Scholar]
  35. Djuhana and Muljadi, “Influence of variation of electrical current welding of ASTM Steel A 36 on micro structure and mechanical properties,” in Journal of Physics: Conference Series, Institute of Physics Publishing, May 2019. doi: 10.1088/1742-6596/1204/1/012014. [Google Scholar]
  36. J. C. F. Jorge et al., “Influence of welding procedure and PWHT on HSLA steel weld metals,” Journal of Materials Research and Technology, vol. 8, no. 1, pp. 561–571, Jan. 2019, doi: 10.1016/j.jmrt.2018.05.007. [CrossRef] [Google Scholar]
  37. R. Pagare, D. Awati, S. Mane, V. Teli, and A. Bhandare, “Investigating the Effects of Welding Parameters on Mild Steel by SMAW Technique,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Dec. 2020. doi: 10.1088/1757-899X/998/1/012052. [Google Scholar]
  38. Adiman, Budiarto, and Aprillius, “The current strength welding analysis of electrode E6013 and E7016 type CS32 steel to the flows on microstructure and hardness,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jan. 2020. doi: 10.1088/1757-899X/725/1/012002. [Google Scholar]
  39. S. Pramono, M. Waaddulloh, D. D. Suharso, H. Purnomo, Oktoberty, and M. R. Gunarti, “The influence of different welding power current on A36 carbon steel toward ship embroidery with heat annealing treatment process,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Feb. 2020. doi: 10.1088/1742-6596/1456/1/012055. [Google Scholar]
  40. N. A. Mohd-Lair, Y. Yuyut, Z. Ahmad, and A. M. Tahir, “SMAW: The Effects of Currents and Welding Rod Diameters on Welded Joint Ultimate Tensile Strength Using the Full Factorial DOE,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Dec. 2021. doi: 10.1088/1742-6596/2129/1/012071. [Google Scholar]
  41. G. İrsel, “Study of the microstructure and mechanical property relationships of shielded metal arc and TIG welded S235JR steel joints,” Materials Science and Engineering A, vol. 830, Jan. 2022, doi: 10.1016/j.msea.2021.142320. [Google Scholar]
  42. A. R. Sayed, R. Gupta, and R. Barai, “Experimental investigation of C45 (AISI 1045) weldments using SMAW and GMAW,” in AIP Conference Proceedings, American Institute of Physics Inc., Sep. 2019. doi: 10.1063/1.5123969. [PubMed] [Google Scholar]
  43. S. Manickam, A. Pradeep, S.Vijayakumar, and E. Mosisa, “Optimization of arc welding process parameters for joining dissimilar metals,” Mater Today Proc, vol. 69, pp. 662–664, Jan. 2022, doi: 10.1016/j.matpr.2022.06.548. [CrossRef] [Google Scholar]
  44. A. M. Sehsah, M. M. Ghanem, H. A. Abdel-Aleem, and M. El-Shennawy, “DISSIMILAR WELDING OF DUCTILE CAST IRON TO 304 STAINLESS STEEL,” International Jornal of Mechanical Engineering, vol. 10, no. 1, pp. 35–48, Apr. 2021, doi: http://org/10.2139/ssrn.3962849. [Google Scholar]
  45. D. K. Pratiwi, A. Arifin, Gunawan, A. Mardhi, and Afriansyah, “Investigation of Welding Parameters of Dissimilar Weld of SS316 and ASTM A36 Joint Using a Grey-Based Taguchi Optimization Approach,” Journal of Manufacturing and Materials Processing, vol. 7, no. 1, Feb. 2023, doi: 10.3390/jmmp7010039. [CrossRef] [Google Scholar]
  46. S. O. Sada and L. C. Enyi, “PARAMETRIC OPTIMIZATION AND DETERMINATION OF A SUITABLE WELDING PROCESS FOR STAINLESS STEEL-MILD STEEL DISSIMILAR METALS WELD,” ARID ZONE JOURNAL OF ENGINEERING, TECHNOLOGY & ENVIRONMENT, vol. 16, no. 4, pp. 803–812, 2020, [Online]. Available: www.azojete.com.ng [Google Scholar]
  47. Azwinur, Syukran, Akhyar, and Ferdiyansyah, “The Effect of Electrode Type on The Tensile Strength Characteristics of Welded Joints Between SA.240 Tp.304 Stainless Steel and SA.36 Carbon Steel Alloys through SMAW Welding Process,” International Journal of Integrated Engineering, vol. 14, no. 4, pp. 35–42, 2022, doi: 10.30880/ijie.2022.14.04.004. [Google Scholar]
  48. D. Mishra and M. Dakkili, “Gas tungsten and shielded metal arc welding of stainless steel 310 and 304 grades over single and double „V‟‟ butt joints,‟” in Materials Today: Proceedings, Elsevier Ltd, Jan. 2020, pp. 772–776. doi: 10.1016/j.matpr.2019.12.189. [CrossRef] [Google Scholar]
  49. M. Khan, M. W. Dewan, and M. Z. Sarkar, “Effects of welding technique, filler metal and post-weld heat treatment on stainless steel and mild steel dissimilar welding joint,” J Manuf Process, vol. 64, pp. 1307–1321, Apr. 2021, doi: 10.1016/j.jmapro.2021.02.058. [CrossRef] [Google Scholar]
  50. S. Sirohi et al., “Microstructure and Mechanical Properties of Combined GTAW and SMAW Dissimilar Welded Joints between Inconel 718 and 304L Austenitic Stainless Steel,” Metals (Basel), vol. 13, no. 1, Jan. 2023, doi: 10.3390/met13010014. [Google Scholar]
  51. S. Mudiantoro, W. Winarto, and H. Oktadinata, “Microstructure Evolution and Distribution of Mechanical Properties in Shielded Metal Arc Welded Dissimilar DSS 2205 and HY80 Joints,” MATEC Web of Conferences, vol. 269, p. 06004, 2019, doi: 10.1051/matecconf/201926906004. [CrossRef] [EDP Sciences] [Google Scholar]
  52. A. Arifin and A. Akbar Pratama, “Taguchi Approach of Dissimilar Welds for AISI 4340 Steel and 304 Austenitic Stainless Steel,” Journal of Mechanical Engineering, vol. 19, no. 3, pp. 2550– 164, 2022. [Google Scholar]
  53. S. Kumar, C. Pandey, and A. Goyal, “Filler Composition Effect on the Mechanical Behavior of the Dissimilar Welds Joint,” in Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH, 2021, pp. 651–657. doi: 10.1007/978-981-33-4320-7_58. [CrossRef] [Google Scholar]
  54. S. Mahajan and R. Chhibber, “High temperature molten salt corrosion investigations on P22/P91 power plant dissimilar welds,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 2, pp. 440–451, Apr. 2021, doi: 10.1177/0954408920966304. [CrossRef] [Google Scholar]
  55. B. Belkessa, D. Miroud, B. Cheniti, N. Ouali, M. Hakem, and M. Djama, “Dissimilar Welding between 2205 Duplex Stainless Steel and API X52 High Strength Low Alloy Steel,” Diffusion Foundations, vol. 18, pp. 7–13, Sep. 2018, doi: 10.4028/www.scientific.net/df.18.7. [CrossRef] [Google Scholar]
  56. B. W. Darvell, “Mechanical Testing,” in Materials Science for Dentistry, Elsevier, 2018, pp. 1–39. doi: 10.1016/B978-0-08-101035-8.50001-8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.