Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 9 | |
Section | Symposium on Mechanical, Chemical, and Advanced Materials Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346501020 | |
Published online | 18 December 2023 |
- L. J. A. Keuning, S. Toxopeus, and J. Pinkster, “The effect of bowshape on the seakeeping performance of a fast monohull,” (2001). [Google Scholar]
- Øyvind Gjerde Kamsvag, “Foreship Arrangement For A Vessel Of The Displacement Type,” U.S. Paten, vol. 1, no. 26 May, pp. 1–8, (2011) [Google Scholar]
- Kiryanto, E. S. Hadi, and A. Firdhaus, “Total resistance analysis on bow form model ulstein X-bow with various angle of flare and stem angle,” IOP Conf. Ser. Mater. Sci. Eng., vol. 674, no. 1, (2019), doi: 10.1088/1757-899X/674/1/012003. [CrossRef] [Google Scholar]
- E. S. Hadi, P. Manik, and M. Iqbal, “Influence of hull entrance angle ‘perintis 750 DWT’, toward ship resistance: The case study for design development ‘perintis 750 DWT.,’” MATEC Web Conf., vol. 159, no. 30 March, pp. 1–7, (2018), doi: 10.1051/matecconf/201815901057. [CrossRef] [EDP Sciences] [Google Scholar]
- M. A. Mosaad, M. M. Gafaary, W. Yehia, and H. M. Hassan, “On the Design of X-bow for Ship Energy Efficiency,” Influ. EEDI Sh. Des. Oper., no. 13 September, pp. 1–7, (2017). [Google Scholar]
- K. Niklas and H. Pruszko, “Full scale CFD seakeeping simulations for case study ship redesigned from V-shaped bulbous bow to X-bow hull form,” Appl. Ocean Res., vol. 89, no. Agustus, pp. 188–201, (2019), doi: 10.1016/j.apor.2019.05.011. [CrossRef] [Google Scholar]
- J. K. White, S. Brizzolara, and W. Beaver, “Effect of inverted bow on the hydrodynamic performance of navy combatant hull forms,” Trans. - Soc. Nav. Archit. Mar. Eng., vol. 123, no. January 2015, pp. 2–13, (2016), doi: 10.5957/wmtc-2015-038. [Google Scholar]
- D. Chrismianto and D. J. Kim, “Parametric bulbous bow design using the cubic Bezier curve and curve-plane intersection method for the minimization of ship resistance in CFD,” J. Mar. Sci. Technol., vol. 19, no. 4, pp. 479–492, (2014), doi: 10.1007/s00773-014-0278-x. [CrossRef] [Google Scholar]
- A. Nazemian and P. Ghadimi, “CFD-based optimization of a displacement trimaran hull for improving its calm water and wavy condition resistance,” Appl. Ocean Res., vol. 113, no. 424, (2021), doi: 10.1016/j.apor.2021.102729. [CrossRef] [Google Scholar]
- Z. Liu, W. Liu, Q. Chen, F. Luo, and S. Zhai, “Resistance reduction technology research of high speed ships based on a new type of bow appendage,” Ocean Eng., vol. 206, no. November 2019, (2020), doi: 10.1016/j.oceaneng.2020.107246. [Google Scholar]
- S. Abbasi, M. Zeinali, and P. Nejadabbasi, “Autonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach,” Int. J. Eng., vol. 31, no. 9, pp. 1593– 1601, (2018), doi: 10.5829/ije.2018.31.09c.16. [Google Scholar]
- Samuel, D. J. Kim, A. Fathuddiin, and A. F. Zakki, “A Numerical Ventilation Problem on Fridsma Hull Form Using an Overset Grid System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1096, no. 1, p. 012041, (2021), doi: 10.1088/1757-899x/1096/1/012041. [CrossRef] [Google Scholar]
- Samuel, D.-J. Kim, M. Iqbal, A. Bahatmaka, and A. Rio Prabowo, “Bulbous bow applications on a catamaran fishing vessel for improving performance,” in MATEC Web of Conferences, (2018), vol. 159, doi: 10.1051/matecconf/201815902057. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Yousefi, R. Shafaghat, and M. Shakeri, “Hydrodynamic analysis techniques for high-speed planing hulls,” Appl. Ocean Res., vol. 42, pp. 105– 113, (2013), doi: 10.1016/j.apor.2013.05.004. [CrossRef] [Google Scholar]
- M. Bakhtiari, S. Veysi, and H. Ghassemi, “Numerical modeling of the stepped planing hull in calm water,” Int. J. Eng. Trans. B Appl., vol. 29, no. 2, pp. 236–245, (2016), doi: 10.5829/idosi.ije.2016.29.02b.13. [Google Scholar]
- C. B. Barrass, “The Phenomena Of Ship Squat,” Int. Shipbuild. Prog., vol. 26, no. 294, pp. 44–47, (1979), doi: 10.3233/isp-1979-2629403. [CrossRef] [Google Scholar]
- U. Iqbal, Muhammad, I Ketut Aria Pria, “An Investigation into the Effect of Water Depth on the Resistance Components of Trimaran Configuration,” Int. Conf. Mar. Technol., no. 9 October, pp. 1–9, 2014. [Google Scholar]
- K. Elsherbiny, T. Tezdogan, M. Kotb, A. Incecik, and S. Day, “Experimental analysis of the squat of ships advancing through the New Suez Canal,” Ocean Eng., vol. 178, no. November 2018, pp. 331– 344, (2019), doi: 10.1016/j.oceaneng.2019.02.078. [Google Scholar]
- S. Jungrungruengtaworn, R. Reabroy, N. Thaweewat, and B. S. Hyun, “Numerical and experimental study on hydrodynamic performance of multi-level OWEC,” Ocean Syst. Eng., vol. 10, no. 4, pp. 359–371, (2020), doi: 10.12989/ose.2020.10.4.359. [Google Scholar]
- M. Terziev, T. Tezdogan, and A. Incecik, “Modelling the hydrodynamic effect of abrupt water depth changes on a ship travelling in restricted waters using CFD,” Ships Offshore Struct., vol. 1, no. 26 Agustus, pp. 3–18, (2020), doi: 10.1080/17445302.2020.1816731. [Google Scholar]
- J. Bechthold and M. Kastens, “Robustness and quality of squat predictions in extreme shallow water conditions based on RANScalculations,” Ocean Eng., vol. 197, no. November 2019, (2020), doi: 10.1016/j.oceaneng.2019.106780. [CrossRef] [Google Scholar]
- K. K. Koh and H. Yasukawa, “Comparison study of a pusher-barge system in shallow water, moderate shallow water and deep water conditions,” Ocean Eng., vol. 46, pp. 9–17, (2012), doi: 10.1016/j.oceaneng.2012.03.002. [CrossRef] [Google Scholar]
- Versteeg H.K., Malalasekera W, An Introduction to computational fluid dynamics.The finite volume method [M]. Harlow, England, UK: Prentice Hall,(2000). [Google Scholar]
- B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269–289, (1974), doi: 10.1016/0045-7825(74)90029-2. [CrossRef] [Google Scholar]
- S. Samuel, A. Trimulyono, and A. W. B. Santosa, “Simulasi CFD pada Kapal Planing Hull,” Kapal J. Ilmu Pengetah. dan Teknol. Kelaut., vol. 16, no. 3 Oktober, pp. 123–128, (2019), doi: 10.14710/kapal.v16i3.26397. [CrossRef] [Google Scholar]
- ITTC, Recommended Procedures and Guidelines: Practical Guidelines for Ship CFD. (2011). [Google Scholar]
- M. Taylan, “Behavior of ships in shallow and restricted waters,” Math. Comput. Appl., vol. 6, no. 1, pp. 1–11, (2001), doi: 10.3390/mca6010001. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.