Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 6 | |
Section | Symposium on Mechanical, Chemical, and Advanced Materials Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346501022 | |
Published online | 18 December 2023 |
- W. Long, B. Fang, A. Ignaszak, Z. Wu, Y. J. Wang, and D. Wilkinson, “Biomass-derived nanostructured carbons and their composites as anode materials for lithium-ion batteries,” Chem. Soc. Rev., vol. 46, no. 23, pp. 7176–7190, 2017, doi: 10.1039/c6cs00639f. [CrossRef] [PubMed] [Google Scholar]
- W. Liu, T. Placke, and K. T. Chau, “Overview of batteries and battery management for electric vehicles,” Energy Reports, vol. 8, pp. 4058– 4084, 2022, doi: 10.1016/j.egyr.2022.03.016. [CrossRef] [Google Scholar]
- N. Hamida, “Review: Studi Kinerja dan Modifikasi Doping pada Material LiFePO 4 Sebagai Katoda Btaerai Li-Ion,” vol. 12, pp. 56– 65, 2023. [Google Scholar]
- J. Zhang, H. Cao, X. Tang, W. Fan, G. Peng, and M. Qu, “Graphite/graphene oxide composite as high capacity and binder-free anode material for lithium-ion batteries,” J. Power Sources, vol. 241, pp. 619–626, 2013, doi: 10.1016/j.jpowsour.2013.05.001. [CrossRef] [Google Scholar]
- M. Ershadi, M. Javanbakht, S. A. Mozaffari, D. Brandell, M. T. Lee, and B. Zahiri, “Facile stitching of graphene oxide nanosheets with ethylenediamine as three-dimensional anode material for lithium-ion battery,” J. Alloys Compd., vol. 818, p. 152912, 2020, doi: 10.1016/j.jallcom.2019.152912. [CrossRef] [Google Scholar]
- L. Li et al., “Carbon-based materials for fast charging lithium-ion batteries,” Carbon N. Y., vol. 183, pp. 721–734, 2021, doi: 10.1016/j.carbon.2021.07.053. [CrossRef] [Google Scholar]
- C. Shang, X. Li, R. Wei, X. Liu, S. Xu, and J. Zhang, “Research progress of metal oxide glass anode materials for lithium-ion batteries : A Review,” J. Non. Cryst. Solids, vol. 618, no. August, p. 122547, 2023, doi: 10.1016/j.jnoncrysol.2023.122547. [CrossRef] [Google Scholar]
- F. Tumimomor, A. Maddu, and G. Pari, “Pemanfaatan Karbon Aktif Dari Bambu Sebagai Elektroda Superkapasitor,” J. Ilm. Sains, vol. 17, no. 1, p. 73, 2017, doi: 10.35799/jis.17.1.2017.15802. [Google Scholar]
- A. M. Abioye and F. N. Ani, “Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review,” Renew. Sustain. Energy Rev., vol. 52, pp. 1282–1293, 2015, doi: 10.1016/j.rser.2015.07.129. [CrossRef] [Google Scholar]
- P. Paryanto, W. A. Wibowo, N. A. Saputra, and R. B. Setyawati, “Adsorption of Sulphur in Biogas by Activated Carbon Derived From Mangrove Fruits (Rhizopora stylosa) as Solid Residue of Natural Dyes Extraction,” Metana, vol. 15, no. 2, pp. 37–42, 2019, doi: 10.14710/metana.v15i2.24424. [CrossRef] [Google Scholar]
- A. R. Nurohmah et al., “Adsorbsi Kontinyu Logam Cr dan Pb dari Limbah Industri Tekstil dengan Limbah Kulit Pisang,” Equilib. J. Chem. Eng., no. January 2021, 2019. [Google Scholar]
- Y. D. I. Siregar, R. Heryanto, N. Lela, and T. H. Lestari, “Karakterisasi Karbon Aktif Asal Tumbuhan dan Tulang Hewan Menggunakan FTIR dan Analisis Kemometrika,” J. Kim. Val., vol. 1, no. November, pp. 103–116, 2015, doi: 10.15408/jkv.v0i0.3146. [Google Scholar]
- A. Aflahannisa and A. Astuti, “Sintesis Nanokomposit Karbon-TiO2 Sebagai Anoda Baterai Lithium,” J. Fis. Unand, vol. 5, no. 4, pp. 357–363, 2016, doi: 10.25077/jfu.5.4.357-363.2016. [CrossRef] [Google Scholar]
- Mardiah, R. Auliaur Rahman, and N. Latifah, “Pembuatan Karbon Aktif dari Limbah Biomassa sebagai Bahan Baku Katoda Udara Fabricated of Activated Carbon from Biomass Waste for Air Cathode Application,” vol. 03, no. 01, pp. 22–26, 2019. [Google Scholar]
- M. A. Pahlevi, R. Junaidi, and F. Hc, “Prototipe baterai berbasis karbon aktif dari bambu betung (tinjauan pengaruh karbon aktif dan elektrolit dalam meningkatkan daya baterai),” Kinetika, vol. 11, no. 01, pp. 55–60, 2020. [Google Scholar]
- H. Lu and X. S. Zhao, “Biomass-derived carbon electrode materials for supercapacitors,” Sustain. Energy Fuels, vol. 1, no. 6, pp. 1265– 1281, 2017, doi: 10.1039/C7SE00099E. [CrossRef] [Google Scholar]
- Yuliusman, “Pembuatan karbon aktif dari tempurung kelapa sawit dengan bahan pengaktif koh dan gas N2 / CO2,” Semin. Teknol. Dan Rekayasa, no. June, pp. 978–979, 2015. [Google Scholar]
- A. Prayogatama and T. Kurniawan, “Modifikasi Karbon Aktif dengan Aktivasi Kimia dan Fisika Menjadi Elektroda Superkapasitor,” J. Sains dan Teknol., vol. 11, no. 1, pp. 47–58, 2022. [Google Scholar]
- D. Imelda, A. Khanza, and D. Wulandari, “Pengaruh Ukuran Partikel Dan Suhu Terhadap Penyerapan Logam Tembaga (Cu) Dengan Arang Aktif Dari Kulit Pisang Kepok (Musa Paradisiaca Formatypica),” J. Teknol., vol. 6, no. 2, pp. 107–118, 2019, doi: 10.31479/jtek.v6i2.10. [Google Scholar]
- K. W. Nugraha, “Pengaruh Penambahan Sari Daun Sirih (Piper betleNugraha, K. W. (2022). Pengaruh Penambahan Sari Daun Sirih (Piper betle L.) Terhadap Karakteristik Mi Kering. Skripsi Universitas Andalas, Padang. http://scholar.unand.ac.id/102718/%0Ahttp://scholar.unand.ac,” Skripsi Univ. Andalas, Padang, 2022. [Google Scholar]
- L. Efiyanti, S. A. Wati, and M. Maslahat, “Pembuatan dan Analisis Karbon Aktif dari Cangkang Buah Karet dengan Proses Kimia dan Fisika,” J. Ilmu Kehutan., vol. 14, no. 1, p. 94, 2020, doi: 10.22146/jik.57479. [CrossRef] [Google Scholar]
- E. A. Khan, Shahjahan, and T. A. Khan, “Adsorption of methyl red on activated carbon derived from custard apple (Annona squamosa) fruit shell: Equilibrium isotherm and kinetic studies,” J. Mol. Liq., vol. 249, pp. 1195–1211, 2018, doi: 10.1016/j.molliq.2017.11.125. [CrossRef] [Google Scholar]
- F. P. Perdani, C. A. Riyanto, and Y. Martono, “Karakterisasi Karbon Aktif Kulit Singkong (Manihot esculenta Crantz) Berdasarkan Variasi Konsentrasi H3PO4 dan Lama Waktu Aktivasi,” J. Chem. Anal. IJCA (Indonesian, vol. 4, no. 2, pp. 72–81, 2021, doi: 10.20885/ijca.vol4.iss2.art4. [CrossRef] [Google Scholar]
- M. A. Ahmad, N. A. Ahmad Puad, and O. S. Bello, “Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation,” Water Resour. Ind., vol. 6, pp. 18– 35, 2014, doi: 10.1016/j.wri.2014.06.002. [CrossRef] [Google Scholar]
- S. Rattanapan, J. Srikram, and P. Kongsune, “Adsorption of Methyl Orange on Coffee grounds Activated Carbon,” Energy Procedia, vol. 138, pp. 949–954, 2017, doi: 10.1016/j.egypro.2017.10.064. [CrossRef] [Google Scholar]
- B. Barlin and W.-C. Chang, “Optimization of activated carbon yield using the Taguchi method in synthesizing activated carbon from wood charcoal,” Tek. J. Sains dan Teknol., vol. 17, no. 1, p. 1, 2021, doi: 10.36055/tjst.v17i1.10321. [CrossRef] [Google Scholar]
- K. M. Doke and E. M. Khan, “Equilibrium, kinetic and diffusion mechanism of Cr(VI) adsorption onto activated carbon derived from wood apple shell,” Arab. J. Chem., vol. 10, pp. S252–S260, 2017, doi: 10.1016/j.arabjc.2012.07.031. [CrossRef] [Google Scholar]
- Y. Kan, Q. Yue, B. Gao, and Q. Li, “Preparation of epoxy resin-based activated carbons from waste printed circuit boards by steam activation,” Mater. Lett., vol. 159, pp. 443–446, 2015, doi: 10.1016/j.matlet.2015.07.053. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.