Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 8 | |
Section | Symposium on Mechanical, Chemical, and Advanced Materials Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346501024 | |
Published online | 18 December 2023 |
- A. R. Sutar, G. G. Bhide, and J. J. Mane, “Ijesrt International Journal of Engineering Sciences & Research Technology Implementation and Study of Bldc Motor Drive System,” Int. J. Eng. Sci. Res. Technol., vol. 5, no. 5, pp. 57–64, 2016, [Online]. Available: http://www.ijesrt.com. [Google Scholar]
- A. Tashakori and M. Ektesabi, “Inverter switch fault diagnosis system for BLDC motor drives,” Eng. Lett., vol. 22, no. 3, pp. 118– 124, 2014. [Google Scholar]
- Y. Da, X. Shi, and M. Krishnamurthy, “Health monitoring, fault diagnosis and failure prognosis techniques for brushless permanent magnet machines,” 2011 IEEE Veh. Power Propuls. Conf. VPPC 2011, 2011, doi: 10.1109/VPPC.2011.6043248. [Google Scholar]
- Y. Chen, S. Liang, W. Li, H. Liang, and C. Wang, “Faults and diagnosis methods of permanent magnet synchronous motors: A review,” Appl. Sci., vol. 9, no. 10, 2019, doi: 10.3390/app9102116. [Google Scholar]
- A. Usman and B. S. Rajpurohit, “Modeling and Classification of Stator Inter-Turn Fault and Demagnetization Effects in BLDC Motor Using Rotor Back-EMF and Radial Magnetic Flux Analysis,” IEEE Access, vol. 8, pp. 118030– 118049, 2020, doi: 10.1109/ACCESS.2020.3005038. [CrossRef] [Google Scholar]
- J. Blesa, J. Quevedo, V. Puig, F. Nejjari, R. Zaragoza, and A. Rolán, “Fault Diagnosis and Prognosis of a Brushless DC motor using a Model-based Approach,” Phme 2020, pp. 1–8, 2020. [Google Scholar]
- K. Roczek and T. Rogala, “Induction motor diagnosis with use of electric parameters,” Diagnostyka, vol. 20, no. 4, pp. 65–74, 2019, doi: 10.29354/diag/113000. [CrossRef] [Google Scholar]
- S. Rajagopalan, J. M. Aller, J. A. Restrepo, T. G. Habetler, and R. G. Harley, “A novel analytic wavelet ridge detector for dynamic eccentricity detection in BLDC motors under dynamic operating conditions,” IECON Proc. (Industrial Electron. Conf., vol. 2005, pp. 1443–1448, 2005, doi: 10.1109/IECON.2005.1569117. [Google Scholar]
- S. Rajagopalan, J. M. Aller, J. A. Restrepo, T. G. Habetler, and R. G. Harley, “Detection of rotor faults in brushless DC motors operating under nonstationary conditions,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1464–1477, 2006, doi: 10.1109/TIA.2006.882613. [CrossRef] [Google Scholar]
- A. Jafari, J. Faiz, and M. A. Jarrahi, “A Simple and Efficient Current-Based Method for Interturn Fault Detection in BLDC Motors,” IEEE Trans. Ind. Informatics, vol. 17, no. 4, pp. 2707– 2715, 2021, doi: 10.1109/TII.2020.3009867. [CrossRef] [Google Scholar]
- V. Kumar, “A Review of Fundamental Shaft Failure Analysis,” Int. Res. J. Eng. Technol., pp. 389–395, 2016, [Online]. Available: www.irjet.net. [Google Scholar]
- M. Tabasi, M. Ojaghi, and M. Mostafavi, “Vibration analysis as useful domain for detection of bearing fault signals in induction motors,” Int. J. Eng. Trans. B Appl., vol. 34, no. 8, pp. 2010– 2020, 2021, doi: 10.5829/ije.2021.34.08b.22. [Google Scholar]
- N. S. (Serbia)) Kanović, Željko (Faculty of Technical Sciences, N. S. (Serbia)) Matić, Dragan (Faculty of Technical Science, N. S. (Serbia)) Jeličić, Zoran (Faculty of Technical Sciences, and N. S. (Serbia)) Petković, Milena (Faculty of Technical Sciences, “Induction motor fault diagnosis based on vibration analysis: A case study,” J. Process. Energy Agric., vol. 17, no. 1, pp. 47–50, 2013, [Online]. Available: http://scindeksclanci.ceon.rs/data/pdf/1821 4487/2013/1821-44871301047K.pdf. [Google Scholar]
- T. A. Shifat and J. Hur, “An Effective Stator Fault Diagnosis Framework of BLDC Motor Based on Vibration and Current Signals,” no. June, 2020, doi: 10.1109/ACCESS.2020.3000856. [Google Scholar]
- G. Zurita, V. Sánchez, and D. Cabrera, “a Review of Vibration Machine Diagnostics By Using Artificial Intelligence Methods,” Investig. Desarro., vol. 16, no. 1, pp. 102–114, 2016, doi: 10.23881/idupbo.016.1-8i. [CrossRef] [Google Scholar]
- S. Bhattacharyya, D. Sen, S. Adhvaryyu, and C. Mukherjee, “Induction Motor Fault Diagnosis by Motor Current Signature Analysis and Neural Network Techniques,” J. Adv. Comput. Commun. Technol. (ISSN 2347 - 2804), vol. 3, no. 1, pp. 12– 18, 2015. [Google Scholar]
- A. Chouhan, P. Gangsar, R. Porwal, and C. K. Mechefske, “Artificial neural network based fault diagnostics for three phase induction motors under similar operating conditions,” Vibroengineering Procedia, vol. 30, pp. 55–60, 2020, doi: 10.21595/vp.2020.21334. [CrossRef] [Google Scholar]
- C. Y. Lee, M. S. Wen, G. L. Zhuo, and T. A. Le, “Application of ANN in Induction-Motor Fault-Detection System Established with MRA and CFFS,” Mathematics, vol. 10, no. 13, 2022, doi: 10.3390/math10132250. [Google Scholar]
- B. S. Yang, X. Di, and T. Han, “Random forests classifier for machine fault diagnosis,” J. Mech. Sci. Technol., vol. 22, no. 9, pp. 1716–1725, 2008, doi: 10.1007/s12206-008-0603-6. [CrossRef] [Google Scholar]
- D. Cabrera et al., “Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition,” Front. Mech. Eng., vol. 10, no. 3, pp. 277–286, 2015, doi: 10.1007/s11465-015-0348-8. [CrossRef] [Google Scholar]
- R. K. Mishra, A. Choudhary, A. R. Mohanty, and S. Fatima, “Multi-domain Bearing Fault Diagnosis using Support Vector Machine,” 2021 IEEE 4th Int. Conf. Comput. Power Commun. Technol. GUCON 2021, no. October 2022, 2021, doi: 10.1109/GUCON50781.2021.9573613. [Google Scholar]
- B.-S. YANG and A. WIDODO, “Support Vector Machine for Machine Fault Diagnosis and Prognosis,” J. Syst. Des. Dyn., vol. 2, no. 1, pp. 12–23, 2008, doi: 10.1299/jsdd.2.12. [Google Scholar]
- A. Widodo et al., “Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine,” Expert Syst. Appl., vol. 36, no. 3 PART 2, pp. 7252–7261, 2009, doi: 10.1016/j.eswa.2008.09.033. [CrossRef] [Google Scholar]
- A. Glowacz, “Fault diagnostics of DC motor using acoustic signals and MSAF-RATIO30- EXPANDED,” Arch. Electr. Eng., vol. 65, no. 4, pp. 733–744, 2016, doi: 10.1515/aee-2016-0051. [CrossRef] [Google Scholar]
- W. Tuerxun, X. Chang, G. Hongyu, J. Zhijie, and Z. Huajian, “Fault Diagnosis of Wind Turbines Based on a Support Vector Machine Optimized by the Sparrow Search Algorithm,” IEEE Access, vol. 9, pp. 69307–69315, 2021, doi: 10.1109/ACCESS.2021.3075547. [CrossRef] [Google Scholar]
- Y. Fan, C. Zhang, Y. Xue, J. Wang, and F. Gu, “A Bearing Fault Diagnosis Using a Support Vector Machine Optimised by the SelfRegulating Particle Swarm,” Shock Vib., vol. 2020, 2020, doi: 10.1155/2020/9096852. [Google Scholar]
- S. Y. Shao, W. J. Sun, R. Q. Yan, P. Wang, and R. X. Gao, “A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing,” Chinese J. Mech. Eng. (English Ed., vol. 30, no. 6, pp. 1347–1356, 2017, doi: 10.1007/s10033-017-0189-y. [CrossRef] [Google Scholar]
- W. Jiang, C. Wang, J. Zou, and S. Zhang, “Application of deep learning in fault diagnosis of rotating machinery,” Processes, vol. 9, no. 6, 2021, doi: 10.3390/pr9060919. [Google Scholar]
- A. W. Techane, Y. F. Wang, and B. H. Weldegiorgis, “Rotating machinery prognostics and application of machine learning algorithms: Use of deep learning with similarity index measure for health status prediction,” Proc. Annu. Conf. Progn. Heal. Manag. Soc. PHM, pp. 1–7, 2018. [Google Scholar]
- O. Alshorman and A. Alshorman, “A review of intelligent methods for condition monitoring and fault diagnosis of stator and rotor faults of induction machines,” Int. J. Electr. Comput. Eng., vol. 11, no. 4, pp. 2820–2829, 2021, doi: 10.11591/ijece.v11i4.pp2820-2829. [Google Scholar]
- J. P. Patel and S. H. Upadhyay, “Comparison between Artificial Neural Network and Support Vector Method for a Fault Diagnostics in Rolling Element Bearings,” Procedia Eng., vol. 144, pp. 390–397, 2016, doi: 10.1016/j.proeng.2016.05.148. [CrossRef] [Google Scholar]
- S. Tyagi and S. K. Panigrahi, “A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks,” J. Appl. Comput. Mech., vol. 3, no. 1, pp. 80–91, 2017, doi: 10.22055/jacm.2017.21576.1108. [Google Scholar]
- M. Saberi, A. Azadeh, A. Nourmohammadzadeh, and P. Pazhoheshfar, “Comparing performance and robustness of SVM and ANN for fault diagnosis in a centrifugal pump,” MODSIM 2011- 19th Int. Congr. Model. Simul. - Sustain. Our Futur. Underst. Living with Uncertain., no. December, pp. 433–439, 2011, doi: 10.36334/modsim.2011.a5.saberi. [Google Scholar]
- M. BIRAME, D. TAIBI, S. A. BESSEDIK, and M. F. BENKHORIS, “Least square support vectors machines approach to diagnosis of stator winding short circuit fault in induction motor,” Diagnostyka, vol. 21, no. 4, pp. 35–41, 2020, doi: 10.29354/diag/130283. [Google Scholar]
- S. Dong and T. Luo, “Bearing degradation process prediction based on the PCA and optimized LS-SVM model,” Meas. J. Int. Meas. Confed., vol. 46, no. 9, pp. 3143–3152, 2013, doi: 10.1016/j.measurement.2013.06.038. [CrossRef] [Google Scholar]
- T. A. Shifat and J. W. Hur, “ANN Assisted Multi Sensor Information Fusion for BLDC Motor Fault Diagnosis,” IEEE Access, vol. 9, no. January, pp. 9429–9441, 2021, doi: 10.1109/ACCESS.2021.3050243. [CrossRef] [Google Scholar]
- I. M. Altaf, T. Akram, M. A. Khan, M. Iqbal, M. M. Ch, and C. H. Hsu, “A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals,” Sensors, vol. 22, no. 5, pp. 1–15, 2022, doi: 10.3390/s22052012. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.