Open Access
Issue
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
Article Number 02003
Number of page(s) 6
Section Symposium on Electrical, Information Technology, and Industrial Engineering
DOI https://doi.org/10.1051/e3sconf/202346502003
Published online 18 December 2023
  1. G. G. Talapur, H. M. Suryawanshi, L. Xu, and A. B. Shitole, “A Reliable Microgrid with Seamless Transition between Grid Connected and Islanded Mode for Residential Community with Enhanced Power Quality,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5246–5255, 2018, doi: 10.1109/TIA.2018.2808482. [CrossRef] [Google Scholar]
  2. Y. Singh, B. Singh, and S. Mishra, “An Uninterruptable PV ArrayBattery Based System Operating in Different Power Modes with Enhanced Power Quality,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3631–3642, 2022, doi: 10.1109/TIE.2021.3070506. [CrossRef] [Google Scholar]
  3. X. Guo, S. Lou, Y. Wu, and Y. Wang, “Low-carbon Operation of Combined Heat and Power Integrated Plants Based on Solar-assisted Carbon Capture,” J. Mod. Power Syst. Clean Energy, vol. 10, no. 5, pp. 1138–1151, 2022, doi: 10.35833/MPCE.2021.000046. [CrossRef] [Google Scholar]
  4. N. Arab, B. Kedjar, A. Javadi, and K. Al-Haddad, “A Multifunctional Single-Phase Grid-Integrated Residential Solar PV Systems Based on LQR Control,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 2099–2109, 2019, doi: 10.1109/TIA.2018.2883551. [CrossRef] [Google Scholar]
  5. R. Li and F. Shi, “Control and optimization of residential photovoltaic power generation system with high efficiency isolated bidirectional dc-dc converter,” IEEE Access, vol. 7, pp. 116107– 116122, 2019, doi: 10.1109/ACCESS.2019.2935344. [CrossRef] [Google Scholar]
  6. Y. Zhao, Z. Lin, F. Wen, Y. Ding, J. Hou, and L. Yang, “RiskConstrained Day-Ahead Scheduling for Concentrating Solar Power Plants with Demand Response Using Info-Gap Theory,” IEEE Trans. Ind. Informatics, vol. 15, no. 10, pp. 5475– 5488, 2019, doi: 10.1109/TII.2019.2899003. [CrossRef] [Google Scholar]
  7. A. Verma, B. Singh, A. Chandra, and K. Al-Haddad, “An Implementation of Solar PV Array Based Multifunctional EV Charger,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4166–4178, 2020, doi: 10.1109/TIA.2020.2984742. [Google Scholar]
  8. C. J. Q. Teh, M. Drieberg, S. Soeung, and R. Ahmad, “Simple PV Modeling under Variable Operating Conditions,” IEEE Access, vol. 9, pp. 96546–96558, 2021, doi: 10.1109/ACCESS.2021.3094801. [CrossRef] [Google Scholar]
  9. S. Xu et al., “Agent-based modeling and simulation for the electricity market with residential demand response,” CSEE J. Power Energy Syst., vol. 7, no. 2, pp. 368–380, 2021, doi: 10.17775/CSEEJPES.2019.01750. [Google Scholar]
  10. B. Singh and S. Kumar, “Distributed Incremental Adaptive Filter Controlled Grid Interactive Residential Photovoltaic-Battery Based Microgrid for Rural Electrification,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4114–4123, 2020, doi: 10.1109/TIA.2020.2987000. [Google Scholar]
  11. J. H. Syu, M. E. Wu, G. Srivastava, C. F. Chao, and J. C. W. Lin, “An IoT-Based Hedge System for Solar Power Generation,” IEEE Internet Things J., vol. 8, no. 13, pp. 10347–10355, 2021, doi: 10.1109/JIOT.2021.3064384. [CrossRef] [Google Scholar]
  12. N. Tang, S. Mao, Y. Wang, and R. M. Nelms, “Solar Power Generation Forecasting With a LASSO-Based Approach,” IEEE Internet Things J., vol. 5, no. 2, pp. 1090–1099, 2018, doi: 10.1109/JIOT.2018.2812155. [CrossRef] [Google Scholar]
  13. S. K. Ram, S. R. Sahoo, B. B. Das, K. Mahapatra, and S. P. Mohanty, “Eternal-Thing: A Secure Aging-Aware Solar-Energy Harvester Thing for Sustainable IoT,” IEEE Trans. Sustain. Comput., vol. 6, no. 2, pp. 320–333, 2021, doi: 10.1109/TSUSC.2020.2987616. [CrossRef] [Google Scholar]
  14. F. A. Kraemer, D. Palma, A. E. Braten, and D. Ammar, “Operationalizing Solar Energy Predictions for Sustainable, Autonomous IoT Device Management,” IEEE Internet Things J., vol. 7, no. 12, pp. 11803–11814, 2020, doi: 10.1109/JIOT.2020.3002330. [CrossRef] [Google Scholar]
  15. T. He, K. W. Chin, S. Soh, C. Yang, and J. Wen, “On Maximizing Max-Min Source Rate in Wireless-Powered Internet of Things,” IEEE Internet Things J., vol. 7, no. 11, pp. 11276– 11289, 2020, doi: 10.1109/JIOT.2020.2997042. [CrossRef] [Google Scholar]
  16. M. Kong et al., “AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater Internet-of-Things,” IEEE Photonics J., vol. 12, no. 4, 2020, doi: 10.1109/JPHOT.2020.3013995. [Google Scholar]
  17. Z. N. Alotaibi et al., “Sky Imager Data Reduction Using Autoencoder and Internet of Things Computing,” IEEE Access, vol. 10, no. October, pp. 111232–111240, 2022, doi: 10.1109/ACCESS.2022.3215438. [CrossRef] [Google Scholar]
  18. Y. Liu and F. Xiao, “Intelligent Monitoring System of Residential Environment Based on Cloud Computing and Internet of Things,” IEEE Access, vol. 9, pp. 58378–58389, 2021, doi: 10.1109/ACCESS.2021.3070344. [CrossRef] [Google Scholar]
  19. P. Solic, A. Leoni, R. Colella, T. Perkovic, L. Catarinucci, and V. Stornelli, “IoT-Ready Energy-Autonomous Parking Sensor Device,” IEEE Internet Things J., vol. 8, no. 6, pp. 4830–4840, 2021, doi: 10.1109/JIOT.2020.3031088. [CrossRef] [Google Scholar]
  20. S. Mondal and R. Paily, “Efficient Solar Power Management System for Self-Powered IoT Node,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 64, no. 9, pp. 2359–2369, 2017, doi: 10.1109/TCSI.2017.2707566. [CrossRef] [Google Scholar]
  21. O. H. Kombo, S. Kumaran, and A. Bovim, “Design and Application of a Low-Cost, Low-Power, LoRa-GSM, IoT Enabled System for Monitoring of Groundwater Resources with Energy Harvesting Integration,” IEEE Access, vol. 9, pp. 128417–128433, 2021, doi: 10.1109/ACCESS.2021.3112519. [CrossRef] [Google Scholar]
  22. C. Yao, Y. Liu, X. Wei, G. Wang, and F. Gao, “Backscatter technologies and the future of internet of things: Challenges and opportunities,” Intell. Converg. Networks, vol. 1, no. 2, pp. 170–180, 2020, doi: 10.23919/icn.2020.0013. [CrossRef] [Google Scholar]
  23. M. Chu, H. Li, X. Liao, and S. Cui, “Reinforcement learning-based multiaccess control and battery prediction with energy harvesting in IoT systems,” IEEE Internet Things J., vol. 6, no. 2, pp. 2009–2020, 2019, doi: 10.1109/JIOT.2018.2872440. [CrossRef] [Google Scholar]
  24. J. L. Gallardo, M. A. Ahmed, and N. Jara, “LoRa IoT-Based Architecture for Advanced Metering Infrastructure in Residential Smart Grid,” IEEE Access, vol. 9, pp. 124295–124312, 2021, doi:. 10.1109/ACCESS.2021.3110873. [CrossRef] [Google Scholar]
  25. Z. Liu, G. Wang, L. Zhao, and G. Yang, “Multi-Points Indoor Air Quality Monitoring Based on Internet of Things,” IEEE Access, vol. 9, pp. 70479–70492, 2021, doi: 10.1109/ACCESS.2021.3073681. [CrossRef] [Google Scholar]
  26. S. N. Makhadmeh, M. A. Al-Betar, K. Assaleh, and S. Kassaymeh, “A Hybrid White Shark Equilibrium Optimizer for Power Scheduling Problem Based IoT,” IEEE Access, vol. 10, no. November, pp. 132212–132231, 2022, doi: 10.1109/ACCESS.2022.3229434. [CrossRef] [Google Scholar]
  27. A. S. Al-Sumaiti, M. M. A. Salama, S. R. Konda, and A. KavousiFard, “A Guided Procedure for Governance Institutions to Regulate Funding Requirements of Solar PV Projects,” IEEE Access, vol. 7, pp. 54203–54217, 2019, doi: 10.1109/ACCESS.2019.2912274. [CrossRef] [Google Scholar]
  28. R. Abbassi, A. Abbassi, M. Jemli, and S. Chebbi, “Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches,” Renew. Sustain. Energy Rev., vol. 90, no. December 2017, pp. 453–474, 2018, doi: 10.1016/j.rser.2018.03.011 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.