Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 02037 | |
Number of page(s) | 10 | |
Section | Symposium on Electrical, Information Technology, and Industrial Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346502037 | |
Published online | 18 December 2023 |
- Y. K. Gupta and S. Kumari, “A study of big data analytics using apache spark with python and scala,” in Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 471–478. doi: 10.1109/ICISS49785.2020.9315863. [Google Scholar]
- J. Resti and F. Selva Jumeilah, “Application of Support Vector Machine (SVM) for Research Categorization,” JOURNAL RESTI, vol. 1, no. 1, pp. 2580–0760, 2017, [Online]. Available: http://jurnal.iaii.or.id [Google Scholar]
- A. A. Kurniawan, M. Mustikasari, “Mllib Apache Spark Performance Evaluation on Fake News Classification in Indonesian,” vol. 9, no. 3, 2022, doi: 10.25126/jtiik.202293538. [Google Scholar]
- M. I. Putri and I. Kharisudin, “Application of Synthetic Minority Oversampling Technique (SMOTE) to Sentiment Analysis of Data Review by Tokopedia Marketplace Application Users,” PRISMA, vol. 5, pp. 759–766, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/ [Google Scholar]
- I. K. Nti, J. A. Quarcoo, J. Aning, and G. K. Fosu, “A mini-review of machine learning in big data analytics: Applications, challenges, and prospects,” Big Data Mining and Analytics, vol. 5, no. 2. Tsinghua University Press, pp. 81–97, Jun. 01, 2022. doi: 10.26599/BDMA.2021.9020028. [CrossRef] [Google Scholar]
- T. Tekdogan and A. Cakmak, “Benchmarking Apache Spark and Hadoop MapReduce on Big Data Classification,” 2021. doi: https://doi.org/10.1145/3481646.3481649. [Google Scholar]
- R. Purnomo, W. Priatna, and T. D. Putra, “Implementasi Big Data Analytical Untuk Perguruan Tinggi Menggunakan Machine Learning,” Journal of Information and Information Security (JIFORTY), vol. 2, no. 1, p. 77, 2021, [Online]. Available: https://archive.ics.uci.edu [CrossRef] [Google Scholar]
- Chang Liu, Bin Wu, Yi Yang, and Zhihong Guo, “Multiple Submodels Parallel Support Vector Machine on Spark,” IEEE International Conference on Big Data, 2016. [Google Scholar]
- A. M. Ryanto, A. A. Ilham, and M. Niswar, “Performance Analysis of Big Data Framework on Virtualized Clusters: Hadoop Mapreduce and Apache Spark,” 2017. [Google Scholar]
- Z. H. You, J. Z. Yu, L. Zhu, S. Li, and Z. K. Wen, “A MapReduce based parallel SVM for large-scale predicting protein-protein interactions,” Neurocomputing, vol. 145, pp. 37–43, Dec. 2014, doi: 10.1016/j.neucom.2014.05.072. [CrossRef] [Google Scholar]
- R. Arisandi, “Comparison Of Random Forest Classification Model With And Without Resampling In Heart Failure Patients,” Journal Gaussian, vol. 12, no. 1, pp. 136–145, May 2023, doi: 10.14710/j.gauss.12.1.136-145. [CrossRef] [Google Scholar]
- S. Diantika, “Application Of Random Oversampling Techniques To Overcome Imbalance Class In Phishing Website Classification Using The Lightgbm Algorithm,” 2023. [Google Scholar]
- A. Riski Indra Pratama et al., “Rainfall Classification Optimization Using Support Vector Machine (Svm) And Recursive Feature Elimination (RFE),” JIPI, vol. 7, no. 2, 2022. [Google Scholar]
- D. Ibrahim, “Analysis of Relationships between Factors and Comparison of Classification Algorithms in Determining Flight Delays,” 2017. [Online]. Available: http://conference.poltektegal.ac.id/index.php/seni2 017 [Google Scholar]
- H. Rezkian, A. Dama, A. A. Supianto, and N. Y. Setiawan, “Analysis of the Use of Regression Models for Predicting Sales of Spare Parts at AHASS Nur Andhita Grogol,” 2021. [Online]. Available: http://j-ptiik.ub.ac.id [Google Scholar]
- J. I. Matematika and S. Adi, “Comparison Of Support Vector Machine (SVM), K-Nearest Neighbors (Knn), And Random Forest (RF) Methods For Heart Failure Prediction,” MATHUnesa, 2022. [17] R. Mulla, “Flight Status Prediction,” 2018. https://www.kaggle.com/datasets/robikscube/flightdelay-dataset-20182022 (accessed Mar. 30, 2023). [Google Scholar]
- D. B. Bisandu, I. Moulitsas, and S. Filippone, “Social ski driver conditional autoregressive-based deep learning classifier for flight delay prediction,” Neural Comput Appl, vol. 34, no. 11, pp. 8777–8802, Jun. 2022, doi: 10.1007/s00521-022-06898-y. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.