Open Access
Issue
E3S Web Conf.
Volume 466, 2023
2023 8th International Conference on Advances in Energy and Environment Research & Clean Energy and Energy Storage Technology Forum (ICAEER & CEEST 2023)
Article Number 01006
Number of page(s) 4
Section Energy Material Research and Power Generation System Analysis
DOI https://doi.org/10.1051/e3sconf/202346601006
Published online 15 December 2023
  1. D. Aurbach, et al. Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries. J. Electrochem. Soc. 147, 1274 (2000). [Google Scholar]
  2. G. Taş, C. Bal, & A. Uysal. Performance comparison of lithium polymer battery SOC estimation using GWO-BiLSTM and cutting-edge deep learning methods. Electr Eng (2023) [Google Scholar]
  3. Z. Wu, et al. Lithium battery SOC estimation based on whale optimization algorithm and unscented Kalman filter. Journal of Renewable and Sustainable Energy 12, 065501 (2020). [CrossRef] [Google Scholar]
  4. L. Xing, X. Wu, & L. Qi. Lithium Battery SOC Estimation Based on Multi-Innovation Unscented and Fractional Order Square Root Cubature Kalman Filter. Applied Sciences 12, 9524 (2022). [CrossRef] [Google Scholar]
  5. G. Taş,A. Uysal & C. Bal. A New Lithium Polymer Battery Dataset with Different Discharge Levels: SOC Estimation of Lithium Polymer Batteries with Different Convolutional Neural Network Models. Arab J Sci Eng 48, 6873–6888 (2023). [CrossRef] [Google Scholar]
  6. X. Zhang, W. Zhang & G. Lei. A Review of Li-ion Battery Equivalent Circuit Models. Transactions on Electrical and Electronic Materials 17, 311–316 (2016). [CrossRef] [Google Scholar]
  7. X. Liu & Y. Dai. Energy storage battery SOC estimate based on improved BP neural network. J. Phys.: Conf. Ser. 2187, 012042 (2022). [Google Scholar]
  8. E. Chemali, et al. A. Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries. IEEE Trans. Ind. Electron. 65, 6730–6739 (2018). [Google Scholar]
  9. Guo, Y. & Zhang, Z. Generalized Variational Mode Decomposition: A Multiscale and Fixed-Frequency Decomposition Algorithm. IEEE Trans. Instrum. Meas. 70, 1–13 (2021). [Google Scholar]
  10. N. Rehman & H. Aftab. Multivariate Variational Mode Decomposition. IEEE Trans. Signal Process. 67, 6039–6052 (2019). [CrossRef] [Google Scholar]
  11. Z. Cai, et al. Generative Adversarial Networks: A Survey Toward Private and Secure Applications. ACM Comput. Surv. 54, 1–38 (2022). [CrossRef] [Google Scholar]
  12. A. Creswell, et al. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 35, 53–65 (2018). [CrossRef] [Google Scholar]
  13. J. Pereira, et al. PictoBERT: Transformers for next pictogram prediction. Expert Systems with Applications 202, 117231 (2022). [CrossRef] [Google Scholar]
  14. F. Zheng, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Applied Energy 183, 513–525 (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.