Open Access
Issue
E3S Web Conf.
Volume 466, 2023
2023 8th International Conference on Advances in Energy and Environment Research & Clean Energy and Energy Storage Technology Forum (ICAEER & CEEST 2023)
Article Number 01015
Number of page(s) 7
Section Energy Material Research and Power Generation System Analysis
DOI https://doi.org/10.1051/e3sconf/202346601015
Published online 15 December 2023
  1. Haoqi SHI, Li GUO, Yixin LIU, et al. Short-Term Forecasting of Photovoltaic Power Based on Total Irradiance Correction of Multi-Source Meteorological Forecast[J]. Power Automation Equipment, 2022, 42(3): 104-112. [Google Scholar]
  2. Bentao WANG, Yang BAI, Hongtao XING, et al. Combined Ultra-short-term Power Prediction Method for Regional Multi-photovoltaicPower Stations Based on STL and MMoE Multi-task Learning[J]. Journal of Power System and Automation, 2022, 34(9): 17-23+31. [Google Scholar]
  3. Mellit A. An Overview on the Application of Machine Learning and Deep Learning for Photovoltaic Output Power Forecasting[C] //Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2020, 13-15 April 2020, Saidia, Morocco. Springer Singapore Springer Singapore, 2021: 55-68. [Google Scholar]
  4. Yang GAO, Guoning XU, Sheng WANG et al. Research on Modification of Near Space Solar Cellmodel and Power Generation Forecast[J]. Journal of Solar Energy, 2022, 43(10): 80-87. [Google Scholar]
  5. Ma T, Yang H, Lu L. Solar Photovoltaic System Modeling and Performance Prediction[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 304-315. [CrossRef] [Google Scholar]
  6. Yijie Zeng, Long Wang, Chao Huang. Parameter Identification of Solar Cell Model Based on Jaya-Da Algorithm[J]. Journal of Solar Energy, 2022, 43(2): 198-202. [Google Scholar]
  7. Jing LU, Haiqing Zhai, Shuanglei Feng et al. Physical Method for Photovoltaic Power Prediction[J]. East China Electric Power, 2013, 41(2): 380-384. [Google Scholar]
  8. Mingwei Li, Song Qing. A variable time-scale short-term power prediction method for tracking the planned output of wind-solar hybrid power generation system[J]. Sichuan Power Technology,2013,36(4):32-36. [Google Scholar]
  9. Yuqiang LI, Qin JIAO, GALE SONAN. Research on Photovoltaic Power Station Short-Term Power Forecast Model Based on The Linear Regression Algorithm[J]. Renewable Energy, 2013, 31(1): 25-28. [Google Scholar]
  10. Ruijin ZHU, Xuejiao GONG, Juanjuan ZHANG. Forecast of Photovoltaic Power Generation Based on EEMD-MPE-LSSVM[J]. China Test, 2021, 47(9): 158-162. [Google Scholar]
  11. Yanyong YANG, Xiangjian MENG, Feng GAO, et al. A Multi-time Scale Regional PV Power Forecasting Method Based on Double-layer Artificial Neural Network[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(2): 55-63. [Google Scholar]
  12. Bentao WANG, Yang BAI, Hongtao XING, et al. Combined Ultra-short-term Power Prediction Method for Regional Multi-photovoltaic Power Stations Based on STL and MMoE Multi-task Learning[J]. Journal of Power System and Automation, 2022, 34(9): 17-23+31. [Google Scholar]
  13. Zhongshan LU, Jianhua YUAN. Ultra-Short Term Power Prediction of Photovoltaic Power Generation System Based on EEMD-LSTM Method[J]. China Test, 2022, 48(12): 125-132. [Google Scholar]
  14. Fuzhong WANG, Shuafeng WANG, Li ZHANG. Ultra Short Term Power Prediction of Photovoltaic Power Generation Based on Vmd-Lstm and Error Compensation[J]. Journal of Solar Energy, 2022, 43(8): 96-103. [Google Scholar]
  15. Wei H, Wang W, Kao X. A Novel Approach to Ultra-Short-Term Wind Power Prediction Based on Feature Engineering and Informer[J]. Energy Reports, 2023, 9: 1236-1250. [CrossRef] [Google Scholar]
  16. Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE transactions on signal processing, 2013, 62(3): 531-544. [Google Scholar]
  17. Abualigah L, Yousri D, Abd Elaziz M, et al. Aquila Optimizer: a Novel Meta-Heuristic Optimization Algorithm[J]. Computers & Industrial Engineering, 2021, 157: 107250. [CrossRef] [Google Scholar]
  18. Rui WANG, Xinchao XU, Jing LU. Short-term Wind Power Prediction Based on Feature Selection and ISSA-CNN-BiGRU[J/OL]. Engineering Science and Technology: 1-14[2023-07-18]. [Google Scholar]
  19. Chenyuan TENG, Yichao DING, Youbing ZHANG, et al. Ultra-short-term Photovoltaic Power Prediction Based on VMD-informer-BiLSTM Model[J/OL]. High Voltage Technology: 112[2023-07-18]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.