Open Access
Issue
E3S Web Conf.
Volume 468, 2023
ICST UGM 2023 - The 4th Geoscience and Environmental Management Symposium
Article Number 10002
Number of page(s) 11
Section Urban-Rural Resources and Land Use Management
DOI https://doi.org/10.1051/e3sconf/202346810002
Published online 21 December 2023
  1. UN, World Population Prospects 2022 Summary of Result, (2022) [Google Scholar]
  2. UN, World Urbanization Prospects The 2018 Revision, (2018) [Google Scholar]
  3. M. T. Andari, A. E. Pravitasari, and S. Anwar, Analisis Urban Sprawl sebagai Rekomendasi Pengendalian Pemanfaatan Ruang untuk Pengembangan Lahan Pertanian di Kabupaten Karawang, in Journal of Regional and Rural Development Planning, 6, 74–88, (2022) [CrossRef] [Google Scholar]
  4. S. van Berkum, How Urban Growth in the Global South Affects Agricultural Dynamics and Food Systems Outcomes in Rural Areas: A Review and Research Agenda, in Journal Sustainability, 15, 2591, (2023) [CrossRef] [Google Scholar]
  5. R. Nuraeni, S. R. P. Sitorus, and R. P. Dyah, Analisis Perubahan Penggunaan Lahan Wilayah di Kabupaten Bandung, in Jurnal Buletin Tanah dan Lahan, 1, 79–85, (2017) [Google Scholar]
  6. Diskominfo Kabupaten Karawang, Dinas Kependudukan dan Catatan Sipil Kabupaten Karawang Melaksanakan Operasi Yustisi, in https://karawangkab.go.id/berita/dinas-kependudukan-dan-catatan-sipil-kabupaten-karawang-melaksanakan-operasi-yustisi [Google Scholar]
  7. L. Gandharum, D. M. Hartono, A. Karsidi, and M. Ahmad, Monitoring Urban Expansion and Loss of Agriculture on the North Coast of West Java Province, Indonesia, Using Google Earth Engine and Intensity Analysis,” in Scientific World Journal, (2022) [Google Scholar]
  8. Badan Pusat Statistik, Kabupaten Karawang dalam Angka, (2022) [Google Scholar]
  9. A. Rafiuddin and Khursatul Munibah, Land Use Change Pattern and the Balance of Food Production in Karawang District, in Journal Il. Tan. Lingk, 18, 15–20, (2016) [CrossRef] [Google Scholar]
  10. S. A. Hafid, B. Susilo, and I. N. Hidayati, Simulasi Spasial Berbasis Citra Landsat, Cellular Automata, dan Regresi Logistik Biner untuk Prediksi Perubahan Penggunaan Lahan Pertanian di Kabupaten Karawang, (2021) [Google Scholar]
  11. R. Garner, Landsat Overview, in https://www.nasa.gov/mission_pages/landsat/overview/index.html [Google Scholar]
  12. N. E. Young, R. S. Anderson, S. M. Chignell, A. G. Vorster, R. Lawrence, and P. H. Evangelista, A survival guide to Landsat preprocessing, in Journal Ecology, 98, 920–932, (2017) [CrossRef] [PubMed] [Google Scholar]
  13. A. Hastings, Population Dynamics, in Encyclopedia of Biodiversity (Second Edition), S. A. Levin, Ed., 175–181, (2013) [CrossRef] [Google Scholar]
  14. S. Wakim and M. Grewal, Population Dynamics, https://bio.libretexts.org/Bookshelves/Human_Biology/Human_Biology_(Wakim_and_Grewal)/24%3A_Ecology/24.08%3A_Population_Dynamics [Google Scholar]
  15. Y. Park and M. E. HeimLa Frombois, Planning for growth in depopulating cities: An analysis of population projections and population change in depopulating and populating US cities, in Journal Cities, 90, 237–248, (2019) [CrossRef] [Google Scholar]
  16. P. Danoedoro, Pengantar Penginderaan Jauh Digital, (2012) [Google Scholar]
  17. USDA, Normalized Difference Vegetation Index (NDVI), https://ipad.fas.usda.gov/cropexplorer/Definitions/spotveg.htm [Google Scholar]
  18. USGS, Landsat Normalized Difference Vegetation Index, in https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index [Google Scholar]
  19. C. M. Viana, S. Oliveira, S. C. Oliveira, and J. Rocha, Land Use/Land Cover Change Detection and Urban Sprawl Analysis, in Spatial Modeling in GIS and R for Earth and Environmental Sciences, Elsevier, 621–651, (2019) [CrossRef] [Google Scholar]
  20. ArcGIS Pro, NDBI.in https://pro.arcgis.com/en/pro-app/latest/arcpy/spatial-analyst/ndbi.htm [Google Scholar]
  21. Y. Zha, J. Gao, and S. Ni, Use of normalized difference built-up index in automatically mapping urban areas from TM imagery,” in International Journal of Remote Sensing, 24, 583–594, (2003) [CrossRef] [Google Scholar]
  22. M. Muhaimin, D. Fitriani, S. Adyatma, and D. Arisanty, Mapping build-up area density using normalized difference built-up index (ndbi) and urban index (ui) wetland in the city Banjarmasin, in IOP Conference Series: Earth and Environmental Science, Institute of Physics, (2022) [Google Scholar]
  23. D.A. Pisner and D.M. Schnyer, Support vector machine, in Machine Learning: Methods and Applications to Brain Disorders, 101–121, (2020) [Google Scholar]
  24. V. N. Vapnik, The Nature of Statistical Learning Theory, in New York Springer, (1995) [CrossRef] [Google Scholar]
  25. J. Cardoso-Fernandes, A. C. Teodoro, A. Lima, and E. Roda-Robles, Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites, in journal Remote Sens (Basel), 12, no. 14, (2020) [Google Scholar]
  26. European Commission, Glossary: Degree of urbanisation, in https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Degree_of_urbanisation [Google Scholar]
  27. L. Dijkstra et al., Applying the Degree of Urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation, in J Urban Econ, 125, (2021) [Google Scholar]
  28. K. Morrish, Classify areas by degree of urbanization, in https://learn.arcgis.com/en/projects/classify-areas-by-degree-of-urbanization/ [Google Scholar]
  29. European Commission. Statistical Office of the European Union., Organisation for Economic Co-operation and Development., Food and Agriculture Organization of the United Nations., United Nations Human Settlements Programme., and World Bank., methodological manual to define cities, towns and rural areas for international comparisons : 2021 edition. (2021) [Google Scholar]
  30. G. K. Uyanık and N. Güler, A Study on Multiple Linear Regression Analysis, in Procedia Soc Behav Sci, 106, 234–240, (2013) [CrossRef] [Google Scholar]
  31. B. H. Baltagi, Econometric Analysis of Panel Data, in 6th ed. Springer Cham, (2021) [CrossRef] [Google Scholar]
  32. C. Savitri et al., Statistik Multivariat dalam Riset. In www.penerbitwidina.com (2021). [Google Scholar]
  33. R. Zulfikar, ESTIMATION MODEL AND SELECTION METHOD OF PANEL DATA REGRESSION Stage Of Panel Data,” (2018) [Google Scholar]
  34. A. Rafiuddin and dan Khursatul Munibah, Land Use Change Pattern and the Balance of Food Production in Karawang District,in Journal Il. Tan. Lingk, 18, 15–20, (2016) [CrossRef] [Google Scholar]
  35. S. Suliman, Y. Setiawan, and Syartinilia, Assessing the paddy fields conversion using optical satellite imageries: A case study in Karawang Regency, West Java, in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, (2022) [Google Scholar]
  36. K. Akpoti, E. Ofosu, and A. T. Kabo-bah, Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa, in Journal Hydrology, 3, (2016) [Google Scholar]
  37. E. Rustiadi, A. E. Pravitasari, Y. Setiawan, S. P. Mulya, D. O. Pribadi, and N. Tsutsumida, Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions,in Journal Cities, 111, 103000, (2021) [CrossRef] [Google Scholar]
  38. A. Murtadho, A. E. Pravitasari, K. Munibah, I. Saizen, and E. Rustiadi, Controlling the Urban Physical Development in Karawang and Purwakarta Regencies using Quantitative Zoning Approach,in Indonesian Journal of Geography, 54, 272–279, (2022) [CrossRef] [Google Scholar]
  39. NN, Panel data econometrics in R, https://cran.r-project.org/web/packages/plm/vignettes/A_plmPackage.html [Google Scholar]
  40. M. Jean, T. Djuharyanto, and U. Nurdiani, Faktor-Faktor Yang Mempengaruhi Alih Fungsi Lahan Sawah Di Kabupaten Bogor [Google Scholar]
  41. A. E. Pravitasari, E. Rustiadi, S. P. Mulya, Y. Setiawan, L. N. Fuadina, and A. Murtadho, Identifying the driving forces of urban expansion and its environmental impact in Jakarta-Bandung mega urban region, in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, May (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.