Open Access
Issue |
E3S Web Conf.
Volume 468, 2023
ICST UGM 2023 - The 4th Geoscience and Environmental Management Symposium
|
|
---|---|---|
Article Number | 10009 | |
Number of page(s) | 8 | |
Section | Urban-Rural Resources and Land Use Management | |
DOI | https://doi.org/10.1051/e3sconf/202346810009 | |
Published online | 21 December 2023 |
- P. Mwangi, F. Karanja, P. Kamau, Analysis of the Relationship between Land Surface Temperature and Vegetation and Built-Up Indices in Upper-Hill, Nairobi. Journal of Geoscience and Environment Protection, 6, 1–16 (2018) [CrossRef] [Google Scholar]
- X. Li, Y. Zhou, S. Yu, G. Jia, H. Li, W. Li, Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 174, 4017–419 (2019) [Google Scholar]
- Y. Yamamoto, Measures to mitigate urban heat islands. NISTEP Science & Technology Foresight Center (2006) [Google Scholar]
- P. Danoedoro, S.H. Murti, Land Cover/Land Use Classification of Landsat-8 OLI Data Using the Random Forest Method (in bahasa). Jurnal Penginderaan Jauh Indonesia, 3(1), 1–7 (2021) [Google Scholar]
- B. Rimal, L. Zhang, H. Keshtkar, N. Wang, Y. Lin, Monitoring and modeling of spatiotemporal urban expansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS International Journal of Geo-Information, 6(9), 288 (2017) [CrossRef] [Google Scholar]
- F. Cánovas-García, F. Alonso-Sarría, F. Gomariz-Castillo, F. Oñate-Valdivieso, Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery. Computers & Geosciences, 103, 1–11 (2017) [CrossRef] [Google Scholar]
- R.C. Estoque, Y. Murayama, Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987-2015). ISPRS Journal of Photogrammetry and Remote Sensing, 133, 18–29 (2017) [CrossRef] [Google Scholar]
- T. Mahesti, K.D. Hartomo, S.Y.J. Prasetyo, Application of the Random Forest Algorithm in Analyzing Surface Temperature Changes in the Salatiga City Area (in bahasa). Jurnal Media Informatika Budidarma, 6(4), 2074–2085 (2022). [CrossRef] [Google Scholar]
- N. Kikon, P. Singh, S.K. Singh, A. Vyas, Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22, 19–28 (2016) [CrossRef] [Google Scholar]
- X. Zhang, R.C. Estoque, Y. Murayama, An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable Cities and Society, 32, 557–568 (2017) [CrossRef] [Google Scholar]
- J.R. Landis, G. G. Koch, The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174 (1977) [CrossRef] [Google Scholar]
- M. Kusuma, P. Susongko, Y. Arfiani, Validation of the Instruments of Learning Readiness With E-Learning Using Rasch Modeling To Empower Technological Content Knowledge (Tck). Jurnal Pena Sains, 6 (2019) [Google Scholar]
- Z. Tan, K.K.L. Lau, E. Ng, Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265–274 (2016) [CrossRef] [Google Scholar]
- J.P. Kim, J.M. Guldmann, Land-use planning and the urban heat island. Environment and Planning B: Planning and Design, 41(6), 1077–1099 (2014) [CrossRef] [Google Scholar]
- F. Yuan, M.E. Bauer, Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386 (2007) [CrossRef] [Google Scholar]
- B. R. Luz, J.K. Crowley, Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm). Remote Sensing of Environment, 109(4), 393–405 (2007) [CrossRef] [Google Scholar]
- L.M. Gartland, Heat islands: understanding and mitigating heat in urban areas. Routledge (2012) [CrossRef] [Google Scholar]
- P. Shahmohamadi, A.I. Che-Ani, K.N.A. Maulud, N.M. Tawil, N.A.G. Abdullah, The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Studies Research, 2011 (2011). [CrossRef] [Google Scholar]
- I.D. Stewart, T.R. Oke, Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900 (2012) [CrossRef] [Google Scholar]
- B. Evangelista, B.I.W. Utary, Implementation of Central Lombok Regency Government Policy on Regional Spatial Management (in bahasa). Jurnal Pendidikan dan Konseling (JPDK), 5, 3835–3844 (2023) [Google Scholar]
- S. Hartati, Development Inequality Analysis Between District and Identification of the Leading Economic Sector. International Journal of Multicultural and Multireligious Understanding (IJMMU), 8, 442–450 (2021) [Google Scholar]
- R. Kurniansah, M.S. Khali, Availability of Tourism Accommodation in Support of Urban Tourism as a Tourism Attraction in Mataram City, West Nusa Tenggara Province. Jurnal Bina Wakya, 1, 39–44 (2018) [Google Scholar]
- M.S. Malik, J.P. Shukla, S. Mishra, Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian Journal of Geo-Marine Sciences, 48, 25–31 (2019) [Google Scholar]
- V.R. Khare, A. Vajpai, D.A. Gupta, Big picture of urban heat island mitigation strategies and recommendation for India, Urban Climate, 37 (2021) [Google Scholar]
- M. Seifhashem, B. Capra, W. Milller, J. Bell, The potential for cool roofs to improve the energy efficiency of single storey warehouse-type retail buildings in Australia: A simulation case study, Energy and Buildings, 158 (2017) [Google Scholar]
- H. Elnabawi, Mohamed, A. Alhumaidi, B. Osman, R. Alshehhi, Cool Roofs in Hot Climates: A [Google Scholar]
- Limitations. Buildings, 12, (2022) [Google Scholar]
- Y. Rahayu, Green Roof Concept Analysis and Simple Design Modeling. Vitruvian, 10(1), (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.