Open Access
Issue |
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
|
|
---|---|---|
Article Number | 00024 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202346900024 | |
Published online | 20 December 2023 |
- Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., & Zettl, A. (1995). Boron nitride nanotubes. Science, 269(5226), 966-967. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Golberg, D., Bando, Y., Tang, C. C., & Zhi, C. Y. (2007). Boron nitride nanotubes. Advanced Materials, 19(18), 2413-2432. [CrossRef] [Google Scholar]
- Lee, C. H., Bhandari, S., Tiwari, B., Yapici, N., Zhang, D., & Yap, Y. K. (2016). Boron nitride nanotubes: recent advances in their synthesis, functionalization, and applications. Molecules, 21(7), 922. [CrossRef] [PubMed] [Google Scholar]
- Wang, J., Kayastha, V. K., Yap, Y. K., Fan, Z., Lu, J. G., Pan, Z., ... & Geohegan, D. B. (2005). Low temperature growth of boron nitride nanotubes on substrates. Nano Letters, 5(12), 2528-2532. [CrossRef] [PubMed] [Google Scholar]
- Wang, J., Lee, C. H., & Yap, Y. K. (2010). Recent advancements in boron nitride nanotubes. Nanoscale, 2(10), 2028-2034. [CrossRef] [PubMed] [Google Scholar]
- Turhan, E. A., Pazarçeviren, A. E., Evis, Z., & Tezcaner, A. (2022). Properties and applications of boron nitride nanotubes. Nanotechnology, 33(24), 242001. [CrossRef] [Google Scholar]
- Zhi, C., Bando, Y., Tang, C., Honda, S., Kuwahara, H., & Golberg, D. (2006). Boron nitride nanotubes/polystyrene composites. Journal of Materials Research, 21(11), 2794-2800 [CrossRef] [Google Scholar]
- Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., & Golberg, D. (2009). Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials, 19(12), 1857-1862. [CrossRef] [Google Scholar]
- Jang, I., Shin, K. H., Yang, I., Kim, H., Kim, J., Kim, W. H., ... & Kim, J. P. (2017). Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 64-72. [CrossRef] [Google Scholar]
- Fu, C., Li, Q., Lu, J., Mateti, S., Cai, Q., Zeng, X., ... & Wong, C. P. (2018). Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Composites Science and Technology, 165, 322-330. [CrossRef] [Google Scholar]
- Huang, X., Zhi, C., Jiang, P., Golberg, D., Bando, Y., & Tanaka, T. (2013). Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Advanced Functional Materials, 23(14), 1824-1831. [CrossRef] [Google Scholar]
- Zeng, X., Sun, J., Yao, Y., Sun, R., Xu, J. B., & Wong, C. P. (2017). A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS nano, 11(5), 5167-5178. [CrossRef] [PubMed] [Google Scholar]
- Liu, Y., Li, B., Ma, C. Q., Huang, F., Feng, G., Chen, H., ... & Bo, Z. (2022). Recent progress in organic solar cells (Part I material science). Science China Chemistry, 1-45. [Google Scholar]
- Duan, L., & Uddin, A. (2020). Progress in stability of organic solar cells. Advanced Science, 7(11), 1903259. [CrossRef] [Google Scholar]
- Rivaton, A., Tournebize, A., Gaume, J., Bussière, P. O., Gardette, J. L., & Therias, S. (2014). Photostability of organic materials used in polymer solar cells. Polymer international, 63(8), 1335-1345. [CrossRef] [Google Scholar]
- Allard, C., Schué, L., Fossard, F., Recher, G., Nascimento, R., Flahaut, E., ... & Gaufrès, E. (2020). Confinement of dyes inside boron nitride nanotubes: photostable and shifted fluorescence down to the near infrared. Advanced Materials, 32(29), 2001429. [CrossRef] [Google Scholar]
- Chenouf, J., Boutahir, M., Rahmani, A., Chadli, H., Hermet, P., Mejía-López, J., & Rahmani, A. (2021). Charge transfer evidence in donor-acceptor single-walled carbon nanotubes filled with sexithiophene oligomers: Nanotube diameter dependence. Journal of Raman Spectroscopy, 52(8), 1381-1394. [CrossRef] [Google Scholar]
- Chenouf, J., Boutahir, M., Fakrach, B., Rahmani, A., Chadli, H., Hermet, P., ... & Rahmani, A. (2020). Encapsulation effect of π-conjugated quaterthiophene on the radial breathing and tangential modes of semiconducting and metallic single-walled carbon nanotubes. Journal of Computational Chemistry, 41(28), 2420-2428. [CrossRef] [PubMed] [Google Scholar]
- Chenouf, J., Boutahir, M., Fakrach, B., AH, R., Chadli, H., & Rahmani, A. (2020). Raman analysis of conjugated bithiophene (2T) encapsulated in semiconducting and metallic single-walled carbon nanotubes. Journal of Raman Spectroscopy, 51(8), 1315-1323. [CrossRef] [Google Scholar]
- Chenouf, J., Boutahir, M., Mejía-López, J., Rahmani, A., Fakrach, B., Chadli, H., & Rahmani, A. (2022). Predicting the structure configuration and Raman analysis of caffeine molecules encapsulated into single-walled carbon nanotubes: Evidence for charge transfer. Solar Energy, 232, 204-211. [CrossRef] [Google Scholar]
- Kensi, Y., Chenouf, J., Fakrach, B., Abdelkader, S. A. A., Rahmani, A. H., Chadli, H., & Rahmani, A. (2023). 1D van der Waals heterostructures based on single-walled carbon nanotubes encapsulating linear carbon chains: Stability and charge transfer evidence from Raman spectroscopy. Applied Surface Science, 611, 155692. [CrossRef] [Google Scholar]
- Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745. [CrossRef] [Google Scholar]
- Xiao, Y., Yan, X. H., Cao, J. X., Ding, J. W., Mao, Y. L., & Xiang, J. (2004). Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Physical Review B, 69(20), 205415. [CrossRef] [Google Scholar]
- Fakrach, B., Rahmani, A., Chadli, H., Sbai, K., & Sauvajol, J. L. (2009). Raman spectrum of single-walled boron nitride nanotube. Physica E: Low-dimensional Systems and Nanostructures, 41(10), 1800-1805. [CrossRef] [Google Scholar]
- Saito, R., Takeya, T., Kimura, T., Dresselhaus, G., & Dresselhaus, M. S. (1998). Raman intensity of single-wall carbon nanotubes. Physical Review B, 57(7), 4145. [CrossRef] [Google Scholar]
- Hermet, P., Izard, N., Rahmani, A., & Ghosez, P. (2006). Raman scattering in crystalline oligothiophenes: a comparison between density functional theory and bond polarizability model. The Journal of Physical Chemistry B, 110(49), 24869-24875. [CrossRef] [PubMed] [Google Scholar]
- Benoit, C., Royer, E., & Poussigue, G. (1992). The spectral moments method. Journal of Physics: Condensed Matter, 4(12), 3125. [CrossRef] [Google Scholar]
- Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics reports, 409(2), 47-99. [CrossRef] [Google Scholar]
- Arenal, R., Ferrari, A. C., Reich, S., Wirtz, L., Mevellec, J. Y., Lefrant, S., ... & Loiseau, A. (2006). Raman spectroscopy of single-wall boron nitride nanotubes. Nano letters, 6(8), 1812-1816. [CrossRef] [PubMed] [Google Scholar]
- Akdim, B., Pachter, R., Duan, X., & Adams, W. W. (2003). Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Physical Review B, 67(24), 245404. [CrossRef] [Google Scholar]
- Chowdhury, R., Wang, C. Y., Adhikari, S., & Scarpa, F. (2010). Vibration and symmetry-breaking of boron nitride nanotubes. Nanotechnology, 21(36), 365702. [CrossRef] [PubMed] [Google Scholar]
- Ciuparu, D., Klie, R. F., Zhu, Y., & Pfefferle, L. (2004). Synthesis of pure boron single-wall nanotubes. The Journal of Physical Chemistry B, 108(13), 3967-3969. [CrossRef] [Google Scholar]
- Shiratori, T., Yamane, I., Nodo, S., Ota, R., Yanase, T., Nagahama, T., ... & Shimada, T. (2021). Synthesis of Boron Nitride Nanotubes Using Plasma-Assisted CVD Catalyzed by Cu Nanoparticles and Oxygen. Nanomaterials, 11(3), 651. [CrossRef] [PubMed] [Google Scholar]
- Kinno, Y., Omachi, H., Nakanishi, Y., & Shinohara, H. (2018). Synthesis of long-chain polythiophene inside carbon nanotubes. Chemistry Letters, 47(8), 1022-1025. [CrossRef] [Google Scholar]
- Alencar, R. S., Aguiar, A. L., Ferreira, R. S., Chambard, R., Jousselme, B., Bantignies, J. L., ... & Alvarez, L. (2021). Raman resonance tuning of quaterthiophene in filled carbon nanotubes at high pressures. Carbon, 173, 163-173. [CrossRef] [Google Scholar]
- Loi, M. A., Gao, J., Cordella, F., Blondeau, P., Menna, E., Bártová, B., ... & Ambrosch-Draxl, C. (2010). Encapsulation of Conjugated Oligomers in Single-Walled Carbon Nanotubes: Towards Nanohybrids for Photonic Devices. Advanced materials, 22(14), 1635-1639. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.