Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00028
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202346900028
Published online 20 December 2023
  1. E. L. Holmboe, W. T. Rouleau, The effect of viscous shear on transient in liquid lines, Journal of Basic Engineering ASME, 89 140 - 148(1967). [Google Scholar]
  2. R. P. Chhabra and J. F. Richardson, Non-Newtonian flow and applied rheology: engineering applications. Butterworth-Heinemann, 2011.M. Lieberman and R. [Google Scholar]
  3. Gottscho, Physics of Thin Films (New York Academic Press, (1994). [Google Scholar]
  4. R.B.Bird, R.C. Amstrong, O. Hassager, Vol. 1 of Dynamics of Polymeric liquid. 2nd ed. New York:Wylie (1987). [Google Scholar]
  5. A. Majd, A. Ahmadi, A. Kermat, Investigation of non Newtonian fluids effects during transient flows in pipeline, J. Mech. Eng. 62(2):105-115 https://doi.org/10.5545/sv-jme.2015.2787. [Google Scholar]
  6. M. Lister, “The Numerical Solution of Hyperbolic Partial Differential Equations by the Method of Characteristics,” Wiley New York, pp. 165–179,(1960) [Google Scholar]
  7. E. B. Wylie and V. L. Streeter, Fluid transients,New York, (1978). [Google Scholar]
  8. M.H. Chaudhry, Applied hydraulic transients. 3rd ed. New York: Spinger, ( 2014). [CrossRef] [Google Scholar]
  9. W. Zielke, “Frequency-Dependent Friction in Transient Pipe Flow,” Transaction of the ASME, Journal of Basic Engineering, vol. 90, no. 1, pp. 109-115, (1968). [CrossRef] [Google Scholar]
  10. A. E. Vardy, and J. M. B. Brown, “Transient Turbulent Friction in Smooth Pipe Flows,” Journal of Sound and Vibration, vol. 259, no. 5, pp. 1011-1036, (2003) [CrossRef] [Google Scholar]
  11. L. Allievi, Théorie du coup de bélier. Paris: Dunod, (1921). [Google Scholar]
  12. N. Joukowsky, “Water hammer,” Proc. Am. Water Work. Assoc., vol. 24, pp. 314– 424, (1904). [Google Scholar]
  13. I. Frigaard, C. Nouar, On the usage of viscosity regular-isation methods for visco-plastic fluid flow computation. Journal of non-newtonian fluid mechanics 127(1), 1–26 (2005) [CrossRef] [Google Scholar]
  14. G. Lipscomb, M. Denn, Flow of bingham fluids in complex geometries. Journal of Non-Newtonian Fluid Mechanics 14, 337–346 (1984). [CrossRef] [Google Scholar]
  15. V. Anand, J. David I.C. Christov, Non-Newtonian fluid–structure interactions: Static response of a microchannel due tointernal flow of a power-law fluid. J. Non-Newton. Fluid Mech. 2019, 264, 62–72. [CrossRef] [Google Scholar]
  16. F.E. Moukhtari, B.A. Lecampion, semi-infinite hydraulic fracture driven by a shear-thinning fluid. J. Fluid Mech. 2018, 838,573–605. [CrossRef] [CrossRef] [Google Scholar]
  17. Klotz, J.A.; Brigham, W.E. To determine Herschel-Bulkley coefficients. J. Pet. Technol. 1998, 50, 80–81. [CrossRef] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.