Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00031
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202346900031
Published online 20 December 2023
  1. S. CHAMKHI and K. BOUTKHILI, “Les relations Maroco-Nigérianes à la lumière de l’alternance politique au Nigeria,” Espac. Géographique Société Marocaine, no. 19, 2017. [Google Scholar]
  2. M. Zakaria, L. Zahiri, H. Khatib, and K. Mansouri, “Effect of Water Hammer on Pipes Containing a Crack Defect,” no. September, 2018. [Google Scholar]
  3. J. Berbesson, “Rapport I. d-1. Les tendances actuelles en matière de régulation et de contrôle des pipelines de transport de liquides à grande distance,” Journées de l’hydraulique, vol. 9, no. 1, pp. 1–8, 1967. [Google Scholar]
  4. H. Iqbal, S. Tesfamariam, H. Haider, and R. Sadiq, “Inspection and maintenance of oil & gas pipelines: a review of policies,” Struct. Infrastruct. Eng., vol. 13, no. 6, pp. 794–815, 2017. [CrossRef] [Google Scholar]
  5. C. J. Han, H. Zhang, and J. Zhang, “Failure pressure analysis of the pipe with inner corrosion defects by FEM,” Int. J. Electrochem. Sci, vol. 11, no. 6, pp. 5046–5062, 2016. [CrossRef] [Google Scholar]
  6. L. ZAHIRI, H. KHATIB, M. E. ECH-CHHIBAT, M. JAMMOUKH, Z. MIGHOUAR, and K. MANSOURI, “Numerical Analysis Of The Harmfulness Of The Fatigue-Corrosion Defect In A Metal Pipe Under Internal Pressure,” Int. J., vol. 8, no. 10, 2020. [Google Scholar]
  7. M. Cerit, “Corrosion pit-induced stress concentration in spherical pressure vessel,” Thin-walled Struct., vol. 136, pp. 106–112, 2019. [CrossRef] [Google Scholar]
  8. D. Ibrahim, “Etude sur les défaillances des aciers API-5L X60 pour Pipeline cas de la ligne GZ1,” mémoire master, Univ. Tlemcen,2013. [Google Scholar]
  9. T. Arumugam, S. Karuppanan, and M. Ovinis, “Finite element analyses of corroded pipeline with single defect subjected to internal pressure and axial compressive stress,” Mar. Struct., vol. 72, p. 102746, 2020. [CrossRef] [Google Scholar]
  10. C. P. DNV, “Recommended Practice DNV-RP-F101.” DNV Oslo, Norway, 2017. [Google Scholar]
  11. S. D. Vijaya Kumar, S. Karuppanan, and M. Ovinis, “Failure pressure prediction of high toughness pipeline with a single corrosion defect subjected to combined loadings using artificial neural network (ANN),” Metals (Basel)., vol. 11, no. 2, p. 373, 2021. [CrossRef] [Google Scholar]
  12. S. Nasiri, M. R. Khosravani, and K. Weinberg, “Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review,” Eng. Fail. Anal., vol. 81, pp. 270–293, 2017. [CrossRef] [Google Scholar]
  13. F. M. Shakiba, S. Member, and M. Zhou, “Novel Analog Implementation of a Hyperbolic Tangent Neuron in Artificial Neural Networks,” vol. 0046, no. c, pp. 1– 12, 2020, doi: 10.1109/TIE.2020.3034856. [Google Scholar]
  14. T. Szandała, “Review and comparison of commonly used activation functions for deep neural networks,” Bio-inspired neurocomputing, pp. 203–224, 2021. [Google Scholar]
  15. M. Lo, S. Karuppanan, and M. Ovinis, “ANN-and FEA-based assessment equation for a corroded pipeline with a single corrosion defect,” J. Mar. Sci. Eng., vol. 10, no. 4, p. 476, 2022. [CrossRef] [Google Scholar]
  16. A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, and H. Oza, “Application of machine learning and artificial intelligence in oil and gas industry,” Pet. Res., vol. 6, no. 4, pp. 379–391, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.