Open Access
Issue |
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
|
|
---|---|---|
Article Number | 00038 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202346900038 | |
Published online | 20 December 2023 |
- C. K. Indira, T. Tiwari, et M. Tiwari, Eco-friendly green cloud structure with internet of things for astute agriculture, J. Pharm. Negat. Results, p. 2973‑2986, (2023). [Google Scholar]
- A. Escamilla-García, G. M. Soto-Zarazúa, M. Toledano-Ayala, E. Rivas-Araiza, et A. Gastélum-Barrios, Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development, J.Appl. Sci., vol. 10, no 11, p. 3835, mai (2020), doi: 10.3390/app10113835. [CrossRef] [Google Scholar]
- I. Ullah, M. Fayaz, N. Naveed, et D. Kim, ANN based learning to kalman filter algorithm for indoor environment prediction in smart greenhouse, IEEE Access, vol.8, p. 159371‑159388, (2020), doi: 10.1109/ACCESS.2020.3016277. [CrossRef] [Google Scholar]
- K. A. Czyzyk, S. T. Bement, W. F. Dawson, et K. Mehta, Quantifying water savings with greenhouse farming, in IEEE Global Humanitarian Technology Conference GHTC 2014, oct. (2014), p. 325‑332. doi: 10.1109/GHTC.2014.6970300. [Google Scholar]
- G. D. Sharma, M. I. Shah, U. Shahzad, M. Jain, et R. Chopra, Exploring the nexus between agriculture and greenhouse gas emissions in BIMSTEC region: The role of renewable energy and human capital as moderators, J. Environ. Manage., vol.297, p. 113316, nov. (2021), doi: 10.1016/j.jenvman.2021.113316. [CrossRef] [Google Scholar]
- M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, et E.-H. M. Aggoune, Internet-of-things (IoT)-based smart agriculture: Toward making the fields talk, IEEE Access, vol. 7, p. 129551‑129583, (2019), doi: 10.1109/ACCESS.2019.2932609. [CrossRef] [Google Scholar]
- N. Choab, A. Allouhi, A. El Maakoul, T. Kousksou, S. Saadeddine, et A. Jamil, Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies, J. Sol. Energy, vol.191, p. 109‑137, oct. (2019), doi: 10.1016/j.solener.2019.08.042. [CrossRef] [Google Scholar]
- J. Contreras-Castillo, J. A. Guerrero-Ibañez, P. C. Santana-Mancilla, et L. Anido-Rifón, SAgric-IoT: An iot-based platform and deep learning for greenhouse monitoring, J. Appl. Sci., vol.13, no 3, p. 1961, (2023). [CrossRef] [Google Scholar]
- K. Nemali, History of controlled environment horticulture: Greenhouses, J. HortSci. vol. 57, no 2, p. 239‑246, févr. (2022), doi: 10.21273/HORTSCI16160-21. [CrossRef] [Google Scholar]
- A. Ali, T. Hussain, N. Tantashutikun, N. Hussain, et G. Cocetta, Application of smart techniques, internet of things and data mining for resource use efficient and sustainable crop production, J. Agric. vol.13, no 2, p. 397, (2023). [Google Scholar]
- B. Ahmad et al., Evaluation of smart greenhouse monitoring system using Raspberry-Pi microcontroller for the production of tomato crop, J. Appl. Res. Plant Sci., vol.4, no 01, p. 452‑458, janv. (2023), doi: 10.38211/joarps.2023.04.01.54. [CrossRef] [Google Scholar]
- M. S. Farooq, R. Javid, S. Riaz, et Z. Atal, IoT based smart greenhouse framework and control strategies for sustainable agriculture, IEEE Access, vol.10, p. 99394‑99420, (2022), doi: 10.1109/ACCESS.2022.3204066. [CrossRef] [Google Scholar]
- F. Jamil, M. Ibrahim, I. Ullah, S. Kim, H. K. Kahng, et D.-H. Kim, Optimal smart contract for autonomous greenhouse environment based on IoT blockchain network in agriculture, J. Comput. Electron. Agric., vol.192, p. 106573, janv. (2022), doi: 10.1016/j.compag.2021.106573. [CrossRef] [Google Scholar]
- P. K. Tripathy, A. K. Tripathy, A. Agarwal, et S. P. Mohanty, MyGreen: An iotenabled smart greenhouse for sustainable agriculture, IEEE Consum. Electron. Mag., vol.10, no 4, p. 57‑62, juill. (2021), doi: 10.1109/MCE.2021.3055930. [CrossRef] [Google Scholar]
- S. D. Nath, M. S. Hossain, I. A. Chowdhury, S. Tasneem, M. Hasan, et R. Chakma, Design and Implementation of an IoT Based Greenhouse Monitoring and Controlling System, J. Comput. Sci. Technol. Stud., vol.3, no 1, p. 01‑06, janv. (2021), doi: 10.32996/jcsts.2021.3.1.1. [CrossRef] [Google Scholar]
- S. R. K. Priya et K. K. Suresh, A study on pre-harvest forecast of sugarcane yield using climatic variables, vol. 7, (2009). [Google Scholar]
- M. Blagojević, M. Blagojević, et V. Ličina, Web-based intelligent system for predicting apricot yields using artificial neural networks, J.Sci. Hortic., vol.213, p. 125‑131, déc. (2016), doi: 10.1016/j.scienta.2016.10.032. [CrossRef] [Google Scholar]
- G. Ravichandran et R. S. Koteeshwari, Agricultural crop predictor and advisor using ANN for smartphones, in 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), Pudukkottai, India: IEEE, févr. (2016), p. 1‑6. doi: 10.1109/ICETETS.2016.7603053. [Google Scholar]
- A. K.Mousa, M. S. Croock, et M. N. Abdullah, Fuzzy based decision support model for irrigation system management, Int. J. Comput. Appl., vol.104, no 9, p. 14‑20, oct. (2014), doi: 10.5120/18230-9177. [Google Scholar]
- B. Ragavi, L. Pavithra, P. Sandhiyadevi, G. K. Mohanapriya, et S. Harikirubha, smart agriculture with AI sensor by using agrobot, in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India: IEEE, mars (2020), p. 1‑4. doi: 10.1109/ICCMC48092.2020.ICCMC-00078. [Google Scholar]
- O. Matei, T. Rusu, A. Petrovan, et G. Mihuţ, A data mining system for real time soil moisture prediction, J. Procedia Eng., vol.181, p. 837‑844, (2017), doi: 10.1016/j.proeng.2017.02.475. [CrossRef] [Google Scholar]
- Q. Yao, Z. Guan, Y. Zhou, J. Tang, Y. Hu, et B. Yang, Application of Support Vector Machine for Detecting Rice Diseases Using Shape and Color Texture Features, in 2009 International Conference on Engineering Computation, Hong Kong, China: IEEE, (2009), p. 79‑83. doi: 10.1109/ICEC.2009.73. [CrossRef] [Google Scholar]
- C. A. Hernández-Morales, J. M. Luna-Rivera, et R. Perez-Jimenez, Design and deployment of a practical IoT-based monitoring system for protected cultivations, Comput. Commun., vol.186, p. 51‑64, mars (2022), doi: 10.1016/j.comcom.2022.01.009. [CrossRef] [Google Scholar]
- H. Hamidane et al., Application analysis of ANFIS strategy for greenhouse climate parameters prediction: Internal temperature and internal relative humidity case of study, E3S Web Conf., vol.297, p. 01041, (2021), doi: 10.1051/e3sconf/202129701041. [CrossRef] [EDP Sciences] [Google Scholar]
- Pansy | Description, Flower, Species, & Facts | Britannica, 16 juin (2023). https://www.britannica.com/plant/carnation (accessed on July 20, 2023). [Google Scholar]
- Fellah trade, la plate-forme d’information et services agricoles destinés aux professionnels de l’agriculture. https://www.fellah-trade.com/fr/filiere-vegetale (accessed on July 22, 2023). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.