Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00045
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202346900045
Published online 20 December 2023
  1. 1. Handbook of Plastic Processes by Charles A. Harper (2006). [Google Scholar]
  2. Kumar, S., Park, H. S., & Lee, C. M. (2020). Data-driven smart control of injection molding process. CIRP Journal of Manufacturing Science and Technology, 31, 439– 449. https://doi.org/10.1016/j.cirpj.2020.07.006 [CrossRef] [Google Scholar]
  3. Zheng, Y., & Wang, D. (Xuejun). (2022). A survey of recommender systems with multi-objective optimization. Neurocomputing, 474, 141–153. https://doi.org/10.1016/j.neucom.2021.11.041 [CrossRef] [Google Scholar]
  4. Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019a). A review on deep learning for recommender systems: Challenges and remedies. Artificial Intelligence Review, 52(1), 1–37. https://doi.org/10.1007/s10462-018-9654-y [CrossRef] [Google Scholar]
  5. Menghi, R., Papetti, A., Germani, M. & Marconi, M. Energy efficiency of manufacturing systems: A review of energy assessment methods and tools. Journal of Cleaner Production 240, 118276 (2019). [CrossRef] [Google Scholar]
  6. Ibn Batouta, K., Aouhassi, S. & Mansouri, K. Energy efficiency in the manufacturing industry — A tertiary review and a conceptual knowledge-based framework. Energy Reports 9, 4635–4653 (2023). [CrossRef] [Google Scholar]
  7. Mashapu, L. D., Eboule, P. S. P., & Pretorius, J.-H. C. (2022). The Need for Artificial Intelligence for Energy-Efficiency Management: A Review. 2022 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), 1–6. https://doi.org/10.1109/EEAE53789.2022.9831359 [Google Scholar]
  8. Spiering, T., Kohlitz, S., Sundmaeker, H., & Herrmann, C. (2015). Energy efficiency benchmarking for injection moulding processes. Robotics and Computer-Integrated Manufacturing, 36, 45–59. https://doi.org/10.1016/j.rcim.2014.12.010 [CrossRef] [Google Scholar]
  9. Cheng, C.-C., & Liu, K.-W. (2018). Optimizing energy savings of the injection molding process by using a cloud energy management system. Energy Efficiency, 11(2), 415–426. https://doi.org/10.1007/s12053-017-9574-8 [CrossRef] [Google Scholar]
  10. Narciso, D. A. C. & Martins, F. G. Application of machine learning tools for energy efficiency in industry: A review. Energy Reports 6, 1181–1199 (2020). [CrossRef] [Google Scholar]
  11. Liu, H., Zhang, X., Quan, L. & Zhang, H. Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units. Journal of Cleaner Production 242, 118355 (2020). [CrossRef] [Google Scholar]
  12. Mianehrow, H. & Abbasian, A. Energy monitoring of plastic injection molding process running with hydraulic injection molding machines. Journal of Cleaner Production 148, 804–810 (2017). [CrossRef] [Google Scholar]
  13. Huszar, M. et al. Sustainable injection moulding: The impact of materials selection and gate location on part warpage and injection pressure. Sustainable Materials and Technologies 5, 1–8 (2015). [CrossRef] [Google Scholar]
  14. Yin, F., Mao, H., Hua, L., Guo, W. & Shu, M. Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Materials & Design 32, 1844–1850 (2011). [CrossRef] [Google Scholar]
  15. Yin, F., Mao, H. & Hua, L. A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters. Materials & Design 32, 3457–3464 (2011). [CrossRef] [Google Scholar]
  16. Rashid, O., Low, K. W. Q., & Pittman, J. F. T. (2020). Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. Journal of Cleaner Production, 264, 121375. https://doi.org/10.1016/j.jclepro.2020.121375 [CrossRef] [Google Scholar]
  17. Matarrese, P., Fontana, A., Sorlini, M., Diviani, L., Specht, I., & Maggi, A. (2017). Estimating energy consumption of injection moulding for environmental-driven mould design. Journal of Cleaner Production, 168, 1505–1512. https://doi.org/10.1016/j.jclepro.2017.07.144 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.