Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00051
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202346900051
Published online 20 December 2023
  1. Abou El Qassime, A., Nhaila, H., & Bahatti, L. Determination of chaos in different jerk systems: dynamical study, circuit design. In 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-6). IEEE. (2023). [Google Scholar]
  2. Miari, M. Qualitative understanding of the Lorenz equations through a well-known second order dynamical system. Physica D: Nonlinear Phenomena, 21(2-3), 247-266. (1986). [CrossRef] [Google Scholar]
  3. Kaouache, S. Projective Synchronization of The Modified Fractional-Order Hyperchaotic Rossler System and Its Application in Secure Communication. Universal Journal of Mathematics and Applications, 4(2), 50-58. (2021). [CrossRef] [Google Scholar]
  4. De la Hoz, M. Z., Acho, L., & Vidal, Y. A modified Chua chaotic oscillator and its application to secure communications. Applied Mathematics and Computation, 247, 712-722. (2014). [CrossRef] [Google Scholar]
  5. Que, D. T., Quyen, N. X., & Hoang, T. M. Performance of Improved-DCSK system over land mobile satellite channel under effect of time-reversed chaotic sequences. Physical Communication, 47, 101342. (2021). [CrossRef] [Google Scholar]
  6. Yu, S., Tang, W. K., Lu, J., & Chen, G. Generation of times Wing Lorenz-Like Attractors From a Modified Shimizu–Morioka Model. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(11), 1168-1172. (2008). [Google Scholar]
  7. Jia, Q. Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A, 366(3), 217-222. (2007). [CrossRef] [Google Scholar]
  8. Campos-Cantón, E., Femat, R., & Chen, G. Attractors generated from switching unstable dissipative systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(3). (2012). [Google Scholar]
  9. Sun, Y. J. Chaos synchronization of uncertain Genesio–Tesi chaotic systems with deadzone nonlinearity. Physics Letters A, 373(36), 3273-3276. (2009). [CrossRef] [Google Scholar]
  10. Yan, J. J., Hung, M. L., Chiang, T. Y., & Yang, Y. S. Robust synchronization of chaotic systems via adaptive sliding mode control. Physics letters A, 356(3), 220-225. (2006). [CrossRef] [Google Scholar]
  11. Lin, C. M., Peng, Y. F., & Lin, M. H. CMAC-based adaptive backstepping synchronization of uncertain chaotic systems. Chaos, Solitons & Fractals, 42(2), 981-988. (2009). [CrossRef] [Google Scholar]
  12. Bowong, S. Adaptive synchronization between two different chaotic dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 12(6), 976-985. (2007). [CrossRef] [Google Scholar]
  13. Chang, W. D. PID control for chaotic synchronization using particle swarm optimization. Chaos, Solitons & Fractals, 39(2), 910-917. (2009). [CrossRef] [Google Scholar]
  14. Carroll, T. L and Pecora, L. M. Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38 (4) 453-456. (1991) [CrossRef] [Google Scholar]
  15. Vaidyanathan, Sundarapandian, et al. “A New Multistable 4-D Hyperchaotic Four-Scroll System, its Dynamic Analysis and Circuit Design.” Engineering Letters 29.4 (2021). [Google Scholar]
  16. Khan, Ayub. “Chaotic analysis and combination-combination synchronization of a novel hyperchaotic system without any equilibria.” Chinese Journal of Physics 56.1 238-251 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.