Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00061
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202346900061
Published online 20 December 2023
  1. Hofmann, E., Rüsch, M.: Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 89, 23–34 (2017). https://doi.org/10.1016/j.compind.2017.04.002. [CrossRef] [Google Scholar]
  2. Mehta, R., Sahni, J., Khanna, K.: Internet of Things: Vision, Applications and Challenges. Procedia Comput. Sci. 132, 1263–1269 (2018). https://doi.org/10.1016/j.procs.2018.05.042. [CrossRef] [Google Scholar]
  3. Silverio-Fernández, M., Renukappa, S., Suresh, S.: What is a smart device? - a conceptualisation within the paradigm of the internet of things. Vis. Eng. 6, 3 (2018). https://doi.org/10.1186/s40327-018-0063-8. [CrossRef] [Google Scholar]
  4. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Comput. Netw. 54, 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010. [CrossRef] [Google Scholar]
  5. Lin, Y.-W., Lin, Y.-B., Hung, H.-N.: CalibrationTalk: A Farming Sensor Failure Detection and Calibration Technique. IEEE Internet Things J. 8, 6893–6903 (2021). https://doi.org/10.1109/JIOT.2020.3036859. [CrossRef] [Google Scholar]
  6. Lin, Y.-B., Lin, Y.-W., Lin, J.-Y., Hung, H.-N.: SensorTalk: An IoT Device Failure Detection and Calibration Mechanism for Smart Farming. Sensors. 19, 4788 (2019). https://doi.org/10.3390/s19214788. [CrossRef] [Google Scholar]
  7. Maurya, M.R., Riyaz, N.U.S.S., Reddy, M.S.B., Yalcin, H.C., Ouakad, H.M., Bahadur, I., Al-Maadeed, S., Sadasivuni, K.K.: A review of smart sensors coupled with Internet of Things and Artificial Intelligence approach for heart failure monitoring. Med. Biol. Eng. Comput. 59, 2185–2203 (2021). https://doi.org/10.1007/s11517-021-02447-2. [CrossRef] [PubMed] [Google Scholar]
  8. Yang, D., Cui, E., Wang, H., Zhang, H.: EH-Edge--An Energy Harvesting-Driven Edge IoT Platform for Online Failure Prediction of Rail Transit Vehicles: A case study of a cloud, edge, and end device collaborative computing paradigm. IEEE Veh. Technol. Mag. 16, 95–103 (2021). https://doi.org/10.1109/MVT.2021.3053193. [CrossRef] [Google Scholar]
  9. Fard, R.H., Hosseini, S.: Machine Learning algorithms for prediction of energy consumption and IoT modeling in complex networks. Microprocess. Microsyst. 89, 104423 (2022). https://doi.org/10.1016/j.micpro.2021.104423. [CrossRef] [Google Scholar]
  10. Ferreira, C., Gonçalves, G.: Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. J. Manuf. Syst. 63, 550– 562 (2022). https://doi.org/10.1016/j.jmsy.2022.05.010. [CrossRef] [Google Scholar]
  11. Leukel, J., González, J., Riekert, M.: Adoption of machine learning technology for failure prediction in industrial maintenance: A systematic review. J. Manuf. Syst. 61, 87–96 (2021). https://doi.org/10.1016/j.jmsy.2021.08.012. [CrossRef] [Google Scholar]
  12. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Trans. Ind. Inform. 11, 812–820 (2015). https://doi.org/10.1109/TII.2014.2349359. [CrossRef] [Google Scholar]
  13. Carvalho, T.P., Soares, F.A.A.M.N., Vita, R., Francisco, R. da P., Basto, J.P., Alcalá, S.G.S.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019). https://doi.org/10.1016/j.cie.2019.106024. [CrossRef] [Google Scholar]
  14. Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., Barbosa, J.: Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Comput. Ind. 123, 103298 (2020). https://doi.org/10.1016/j.compind.2020.103298. [CrossRef] [Google Scholar]
  15. Durairaj, D., Wróblewski, Ł., Sheela, A., Hariharasudan, A., Urbański, M.: Random forest based power sustainability and cost optimization in smart grid. Prod. Eng. Arch. 28, 82–92 (2022). https://doi.org/10.30657/pea.2022.28.10. [CrossRef] [Google Scholar]
  16. Jamwal, A., Agrawal, R., Sharma, M.: Deep learning for manufacturing sustainability: Models, applications in Industry 4.0 and implications. Int. J. Inf. Manag. Data Insights. 2, (2022). https://doi.org/10.1016/j.jjimei.2022.100107. [Google Scholar]
  17. Sishodia, R.P., Ray, R.L., Singh, S.K.: Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 12, 3136 (2020). https://doi.org/10.3390/rs12193136. [CrossRef] [Google Scholar]
  18. Emamian, M., Eskandari, A., Aghaei, M., Nedaei, A., Sizkouhi, A.M., Milimonfared, J.: Cloud Computing and IoT Based Intelligent Monitoring System for Photovoltaic Plants Using Machine Learning Techniques. Energies. 15, 3014 (2022). https://doi.org/10.3390/en15093014. [CrossRef] [Google Scholar]
  19. Fahim, M., Sillitti, A.: Anomaly Detection, Analysis and Prediction Techniques in IoT Environment: A Systematic Literature Review. IEEE Access. 7, 81664–81681 (2019). https://doi.org/10.1109/ACCESS.2019.2921912. [CrossRef] [Google Scholar]
  20. Nunes, P., Santos, J., Rocha, E.: Challenges in predictive maintenance – A review. CIRP J. Manuf. Sci. Technol. 40, 53–67 (2023). https://doi.org/10.1016/j.cirpj.2022.11.004. [CrossRef] [Google Scholar]
  21. Liao, L., Jin, W., Pavel, R.: Enhanced Restricted Boltzmann Machine with Prognosability Regularization for Prognostics and Health Assessment. IEEE Trans. Ind. Electron. 63, 7076–7083 (2016). https://doi.org/10.1109/TIE.2016.2586442. [CrossRef] [Google Scholar]
  22. Amruthnath, N., Gupta, T.: Fault class prediction in unsupervised learning using model-based clustering approach. Presented at the 2018 International Conference on Information and Computer Technologies, ICICT 2018 (2018). https://doi.org/10.1109/INFOCT.2018.8356831. [Google Scholar]
  23. Rahhal, J.S., Abualnadi, D.: IOT Based Predictive Maintenance Using LSTM RNN Estimator. Presented at the 2nd International Conference on Electrical, Communication and Computer Engineering, ICECCE 2020 (2020). https://doi.org/10.1109/ICECCE49384.2020.9179459. [Google Scholar]
  24. Taşabat, S.E., Özçay, T., Sertbaş, S., Akca, E.: Industry 4.0 application on diagnosis prediction of construction machinery: A new model approach. Civ. Eng. Archit. 8, 404–416 (2020). https://doi.org/10.13189/cea.2020.080402. [CrossRef] [Google Scholar]
  25. Huang, M., Liu, Z., Tao, Y.: Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion. Simul. Model. Pract. Theory. 102, (2020). https://doi.org/10.1016/j.simpat.2019.101981. [CrossRef] [Google Scholar]
  26. Cheng, J.C.P., Chen, W., Chen, K., Wang, Q.: Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 112, (2020). https://doi.org/10.1016/j.autcon.2020.103087. [CrossRef] [Google Scholar]
  27. Zhang, X., Rane, K.P., Kakaravada, I., Shabaz, M.: Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology. Nonlinear Eng. 10, 245–254 (2021). https://doi.org/10.1515/nleng-2021-0019. [CrossRef] [Google Scholar]
  28. Mihigo, I.N., Zennaro, M., Uwitonze, A., Rwigema, J., Rovai, M.: On-Device IoT-Based Predictive Maintenance Analytics Model: Comparing TinyLSTM and TinyModel from Edge Impulse. Sensors. 22, (2022). https://doi.org/10.3390/s22145174. [CrossRef] [Google Scholar]
  29. Wahid, A., Breslin, J.G., Intizar, M.A.: Prediction of Machine Failure in Industry 4.0: A Hybrid CNN-LSTM Framework. Appl. Sci. Switz. 12, (2022). https://doi.org/10.3390/app12094221. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.