Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00065
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202346900065
Published online 20 December 2023
  1. Schrank D, Eisele B, Lomax T, et al (2021) 2021 Urban Mobility Report [Google Scholar]
  2. VANET-Enabled Eco-Friendly Road Characteristics-Aware Routing for Vehicular Traffic | IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/document/6692807. [Google Scholar]
  3. Pulugurtha SS, Duddu VR, Venigalla M (2020) Evaluating spatial and temporal effects of planned special events on travel time performance measures. Transp Res Interdiscip Perspect 6:100168. https://doi.org/10.1016/j.trip.2020.100168 [Google Scholar]
  4. Kazi S, Nuzhat S, Nashrah A, Rameeza Q (2018) Smart Parking System to Reduce Traffic Congestion. 2018 Int Conf Smart City Emerg Technol ICSCET 1–4. https://doi.org/10.1109/ICSCET.2018.8537367 [Google Scholar]
  5. INRIX Economic Cost of Parking Pain Report. https://www2.inrix.com/research- parking-2017. Accessed 27 Mar 2023 [Google Scholar]
  6. Awan FM, Saleem Y, Minerva R, Crespi N (2020) A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction. Sensors 20:322. https://doi.org/10.3390/s20010322 [CrossRef] [PubMed] [Google Scholar]
  7. Zhao Z, Zhang Y (2020) A Comparative Study of Parking Occupancy Prediction Methods considering Parking Type and Parking Scale. J Adv Transp 2020:e5624586. https://doi.org/10.1155/2020/5624586 [Google Scholar]
  8. Soumana, A. N. H., Salah, M. B., Idbraim, S., & Boulouz, A. (2023, July). Comparing machine learning models for large scale prediction of parking space availability. In AIP Conference Proceedings (Vol. 2814, No. 1). AIP Publishing. [Google Scholar]
  9. Arjona J, Linares MP, Casanovas J (2019) A deep learning approach to real-time parking availability prediction for smart cities. In: Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems. Association for Computing Machinery, New York, NY, USA, pp 1–7 [Google Scholar]
  10. Amato G, Carrara F, Falchi F, et al (2016) Car parking occupancy detection using smart camera networks and Deep Learning. In: 2016 IEEE Symposium on Computers and Communication (ISCC). pp 1212–1217 [Google Scholar]
  11. Yang S, Ma W, Pi X, Qian S (2019) A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transp Res Part C Emerg Technol 107:248–265. https://doi.org/10.1016/j.trc.2019.08.010 [CrossRef] [Google Scholar]
  12. Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. Technical report, EBSE Technical Report EBSE-2007-01 [Google Scholar]
  13. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Google Scholar]
  14. Rong Y, Xu Z, Yan R, Ma X (2018) Du-Parking: Spatio-Temporal Big Data Tells You Realtime Parking Availability. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, New York, NY, USA, pp 646–654 [CrossRef] [Google Scholar]
  15. Li J, Li J, Zhang H (2018) Deep Learning Based Parking Prediction on Cloud Platform. In: 2018 4th International Conference on Big Data Computing and Communications (BIGCOM). pp 132–137 [Google Scholar]
  16. Acharya D, Yan W, Khoshelham K (2018) Real-time image-based parking occupancy detection using deep learning [Google Scholar]
  17. Chawathe SS (2019) Using Historical Data to Predict Parking Occupancy. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). pp 0534–0540 [Google Scholar]
  18. Zhang W, Liu H, Liu Y, et al (2019) Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction [Google Scholar]
  19. Nurullayev S, Lee S-W (2019) Generalized Parking Occupancy Analysis Based on Dilated Convolutional Neural Network. Sensors 19:277. https://doi.org/10.3390/s19020277 [CrossRef] [PubMed] [Google Scholar]
  20. Ranjan A, Misra P, Vasan A, et al (2019) City Scale Monitoring of On-Street Parking Violations with StreetHAWK. In: Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. Association for Computing Machinery, New York, NY, USA, pp 31–40 [CrossRef] [Google Scholar]
  21. Ali G, Ali T, Irfan M, et al (2020) IoT Based Smart Parking System Using Deep Long Short Memory Network. Electronics 9:1696. https://doi.org/10.3390/electronics9101696 [CrossRef] [Google Scholar]
  22. Provoost JC, Kamilaris A, Wismans LJJ, et al (2020) Predicting parking occupancy via machine learning in the web of things. Internet Things 12:100301. https://doi.org/10.1016/j.iot.2020.100301 [CrossRef] [Google Scholar]
  23. Paidi V, Fleyeh H, Nyberg RG (2020) Deep learning‐based vehicle occupancy detection in an open parking lot using thermal camera. IET Intell Transp Syst 14:1295–1302. https://doi.org/10.1049/iet-its.2019.0468 [CrossRef] [Google Scholar]
  24. Sampathkumar A, Maheswar R, Harshavardhanan P, et al (2020) Majority Voting based Hybrid Ensemble Classification Approach for Predicting Parking Availability in Smart City based on IoT. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). pp 1–8 [Google Scholar]
  25. Ismail MH, Razak TR, Gining RAJM, et al (2021) Predicting vehicle parking space availability using multilayer perceptron neural network. IOP Conf Ser Mater Sci Eng 1176:012035. https://doi.org/10.1088/1757-899X/1176/1/012035 [CrossRef] [Google Scholar]
  26. Balmer M, Weibel R, Huang H (2021) Value of incorporating geospatial information into the prediction of on-street parking occupancy – A case study. Geo-Spat Inf Sci 24:438–457. https://doi.org/10.1080/10095020.2021.1937337 [CrossRef] [Google Scholar]
  27. Xiao X, Jin Z, Hui Y, et al (2021) Hybrid Spatial–Temporal Graph Convolutional Networks for On-Street Parking Availability Prediction. Remote Sens 13:3338. https://doi.org/10.3390/rs13163338 [CrossRef] [Google Scholar]
  28. Song Y, Zeng J, Wu T, et al (2021) Vision-Based Parking Space Detection: A Mask R-CNN Approach. In: 2021 IEEE/CIC International Conference on Communications in China (ICCC). pp 300–305 [Google Scholar]
  29. Liu Y, Liu C, Luo X (2021) Spatiotemporal Deep-Learning Networks for Shared-Parking Demand Prediction. J Transp Eng Part Syst 147:04021026. https://doi.org/10.1061/JTEPBS.0000522 [CrossRef] [Google Scholar]
  30. Barraco M, Bicocchi N, Mamei M, Zambonelli F (2021) Forecasting Parking Lots Availability: Analysis from a Real-World Deployment. In: 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). pp 299–304 [Google Scholar]
  31. Jin B, Zhao Y, Ni J (2022) Sustainable Transport in a Smart City: Prediction of Short-Term Parking Space through Improvement of LSTM Algorithm. Appl Sci 12:11046. https://doi.org/10.3390/app122111046 [CrossRef] [Google Scholar]
  32. Thai T, Nguyen-Tran T-L, Le K-H (2022) Toward a Predictive Smart Parking System in IoT-enabled Cities. pp 1–6 [Google Scholar]
  33. Huang Y-H, Hsieh C-H (2022) A decision support system for available parking slots on the roadsides in urban areas. Expert Syst Appl 205:117668. https://doi.org/10.1016/j.eswa.2022.117668 [CrossRef] [Google Scholar]
  34. Ouseph A, Francis S, S D, et al (2022) Machine Learning Based Smart Parking Management for Intelligent Transportation Systems [Google Scholar]
  35. Kasera R, Acharjee T (2022) Parking slot occupancy prediction using LSTM. Innov Syst Softw Eng. https://doi.org/10.1007/s11334-022-00481-3 [Google Scholar]
  36. Hung BT, Chakrabarti P (2022) Parking Lot Occupancy Detection Using Hybrid Deep Learning CNN-LSTM Approach. In: Mathur G, Bundele M, Lalwani M, Paprzycki M (eds) Proceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications. Springer Nature, Singapore, pp 501–509 [CrossRef] [Google Scholar]
  37. Hong S, Shin H, Choi J, Park N (2022) Prediction-based One-shot Dynamic Parking Pricing: 31st ACM International Conference on Information and Knowledge Management, CIKM 2022. CIKM 2022 - Proc 31st ACM Int Conf Inf Knowl Manag 748–757. https://doi.org/10.1145/3511808.3557421 [Google Scholar]
  38. Sasaki Y, Takayama J, Santana JR, et al (2022) Predicting Parking Lot Availability by Graph-to-Sequence Model: A Case Study with SmartSantander [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.