Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00070
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202346900070
Published online 20 December 2023
  1. WHO Coronavirus (COVID-19) Dashboard. (2023). Retrieved 24 January 2023, from https://covid19.who.int/ [Google Scholar]
  2. WORLD HEALTH ORGANIZATION, et al. Coronavirus disease 2019 (COVID-19): situation report, 73. 2020. [Google Scholar]
  3. Desai, S. B., Pareek, A., & Lungren, M. P. (2020). Deep learning and its role in COVID-19 medical imaging. Intelligence-Based Medicine, 3, 100013. [CrossRef] [Google Scholar]
  4. Oh, Y., Park, S., & Ye, J. C. (2020). Deep learning COVID-19 features on CXR using limited training data sets. IEEE transactions on medical imaging, 39(8), 2688-2700. [CrossRef] [PubMed] [Google Scholar]
  5. MANSOUR, Romany F., ESCORCIA-GUTIERREZ, Jose´, GAMARRA, Margarita, et al. Unsupervised deep learning based variational auto encoder model for COVID-19 diagnosis and classification. Pattern Recognition Letters, 2021, vol. 151, p. 267-274. [CrossRef] [PubMed] [Google Scholar]
  6. KARADAYI, Yildiz, AYDIN, Mehmet N., et O¨ Gˇ RENCI, Arif Selc¸uk. Unsupervised anomaly detection in multivariate spatiotemporal data using deep learning: early detection of COVID-19 outbreaks in Italy. IEEE Access, 2020, vol. 8, p. 164155-164177. [CrossRef] [PubMed] [Google Scholar]
  7. CHAUDHARY, Laxmi et SINGH, Buddha. Community detection using unsupervised Machine Learning techniques on COVID-19 dataset. Social Network Analysis and Mining, 2021, vol. 11, no 1, p. 1-9.. [CrossRef] [Google Scholar]
  8. HUYUT, M. T. Automatic Detection of Severely and Mildly Infected COVID-19 Patients with Supervised Machine Learning Models. IRBM, 2022, p. 100725. [Google Scholar]
  9. HASOON, Jamal N., FADEL, Ali Hussein, HAMEED, Rasha Subhi, et al. COVID-19 anomaly detection and classification method based on supervised Machine Learning of chest X-ray images. Results in Physics, 2021, vol. 31, p. 105045. [CrossRef] [PubMed] [Google Scholar]
  10. DUTTA, Pijush, PAUL, Shobhandeb, et KUMAR, Asok. Comparative analysis of various supervised Machine Learning techniques for diagnosis of COVID-19. In : Electronic devices, circuits, and systems for biomedical applications. Academic Press, 2021. p. 521-540. [Google Scholar]
  11. MUHAMMAD, L. J., ALGEHYNE, Ebrahem A., USMAN, Sani Sharif, et al. Supervised Machine Learning models for prediction of COVID-19 infection using epidemiology dataset. SN computer science, 2021, vol. 2, no 1, p. 1-13. [CrossRef] [Google Scholar]
  12. Ismael, A. M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164, 114054. [CrossRef] [PubMed] [Google Scholar]
  13. Panwar, H., Gupta, P. K., Siddiqui, M. K., Morales-Menendez, R., & Singh, V. (2020). Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons & Fractals, 138, 109944. [CrossRef] [Google Scholar]
  14. Sevi, M., & Aydin, İ. (2020, October). COVID-19 detection using deep learning methods. In 2020 International conference on data analytics for business and industry: way towards a sustainable economy (ICDABI) (pp. 1-6). IEEE. [Google Scholar]
  15. Loey, M., Manogaran, G., Taha, M. H. N., & Khalifa, N. E. M. (2021). A hybrid deep transfer learning model with Machine Learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement, 167, 108288. [CrossRef] [Google Scholar]
  16. Heidari, A., Jafari Navimipour, N., Unal, M., & Toumaj, S. (2022). Machine Learning applications for COVID-19 outbreak management. Neural Computing and Applications, 34(18), 15313-15348. [CrossRef] [PubMed] [Google Scholar]
  17. RUSTAM, Furqan, RESHI, Aijaz Ahmad, MEHMOOD, Arif, et al. COVID-19 future forecasting using supervised Machine Learning models. IEEE access, 2020, vol. 8, p. 101489-101499. [CrossRef] [Google Scholar]
  18. KHAN, Rashid, RUSTAM, Furqan, KANWAL, Khadija, et al. US Based COVID-19 tweets sentiment analysis using textblob and supervised Machine Learning algorithms. In : 2021 international conference on artificial intelligence (ICAI). IEEE, 2021. p. 1-8. [Google Scholar]
  19. BOUSSEN, Salah, CORDIER, Pierre-Yves, MALET, Arthur, et al. Triage and monitoring of COVID-19 patients in intensive care using unsupervised Machine Learning. Computers in Biology and Medicine, 2022, vol. 142, p. 105192. [CrossRef] [PubMed] [Google Scholar]
  20. Hooshmand, S. A., Zarei Ghobadi, M., Hooshmand, S. E., Azimzadeh Jamalkandi, S., Alavi, S. M., & Masoudi-Nejad, A. (2021). A multimodal deep learning-based drug repurposing approach for treatment of COVID-19. Molecular diversity, 25, 1717-1730. [CrossRef] [PubMed] [Google Scholar]
  21. Pham, T. H., Qiu, Y., Zeng, J., Xie, L., & Zhang, P. (2021). A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. Nature machine intelligence, 3(3), 247-257. [CrossRef] [PubMed] [Google Scholar]
  22. Yang, F., Zhang, Q., Ji, X., Zhang, Y., Li, W., Peng, S., & Xue, F. (2022). Machine Learning applications in drug repurposing. Interdisciplinary Sciences: Computational Life Sciences, 14(1), 15-21. [CrossRef] [PubMed] [Google Scholar]
  23. Aghdam, R., Habibi, M., & Taheri, G. (2021). Using informative features in Machine Learning based method for COVID-19 drug repurposing. Journal of cheminformatics, 13, 1-14. [CrossRef] [PubMed] [Google Scholar]
  24. Lv, H., Shi, L., Berkenpas, J. W., Dao, F. Y., Zulfiqar, H., Ding, H., ... & Cao, R. (2021). Application of artificial intelligence and Machine Learning for COVID-19 drug discovery and vaccine design. Briefings in Bioinformatics, 22(6), bbab320. [CrossRef] [PubMed] [Google Scholar]
  25. Ong, E., Wong, M. U., Huffman, A., & He, Y. (2020). COVID-19 coronavirus vaccine design using reverse vaccinology and Machine Learning. Frontiers in immunology, 11, 1581. [CrossRef] [PubMed] [Google Scholar]
  26. Lian, A. T., Du, J., & Tang, L. (2022). Using a Machine Learning approach to monitor COVID-19 vaccine adverse events (VAE) from twitter data. Vaccines, 10(1), 103. [CrossRef] [PubMed] [Google Scholar]
  27. Magazzino, C., Mele, M., & Coccia, M. (2022). A Machine Learning algorithm to analyse the effects of vaccination on COVID-19 mortality. Epidemiology & Infection, 150, e168. [CrossRef] [PubMed] [Google Scholar]
  28. Ahamad, M. M., Aktar, S., Uddin, M. J., Rashed-Al-Mahfuz, M., Azad, A. K. M., Uddin, S., ... & Moni, M. A. (2022, December). Adverse effects of COVID-19 vaccination: Machine Learning and statistical approach to identify and classify incidences of morbidity and postvaccination reactogenicity. In Healthcare (Vol. 11, No. 1, p. 31). [CrossRef] [Google Scholar]
  29. Flora, J., Khan, W., Jin, J., Jin, D., Hussain, A., Dajani, K., & Khan, B. (2022). Usefulness of vaccine adverse event reporting system for machine-learning based vaccine research: A Case study for COVID-19 vaccines. International Journal of Molecular Sciences, 23(15), 8235. [CrossRef] [PubMed] [Google Scholar]
  30. Hatmal, M. M. M., Al-Hatamleh, M. A., Olaimat, A. N., Hatmal, M., Alhaj-Qasem, D. M., Olaimat, T. M., & Mohamud, R. (2021). Side effects and perceptions following COVID-19 vaccination in Jordan: a randomized, cross-sectional study implementing Machine Learning for predicting severity of side effects. Vaccines, 9(6), 556. [CrossRef] [PubMed] [Google Scholar]
  31. Kazemi, M., Bragazzi, N. L., & Kong, J. D. (2022). Assessing inequities in COVID-19 vaccine roll-out strategy programs: a cross-country study using a Machine Learning approach. Vaccines, 10(2), 194. [CrossRef] [PubMed] [Google Scholar]
  32. Abbaspour, S., Robbins, G. K., Blumenthal, K. G., Hashimoto, D., Hopcia, K., Mukerji, S. S., ... & Klerman, E. B. (2022). Identifying modifiable predictors of COVID-19 vaccine side effects: a Machine Learning approach. Vaccines, 10(10), 1747. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.