Open Access
Issue |
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
|
|
---|---|---|
Article Number | 00072 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/e3sconf/202346900072 | |
Published online | 20 December 2023 |
- R. Ahmed, S. Mahadzir, N. E. B. Rozali, K. Biswas, F. Matovu, and K. Ahmed, “Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101488, 2021. [CrossRef] [Google Scholar]
- M. A. Pereira, L. F. Santos, J. A. Caballero, M. A. Ravagnani, and C. B. Costa, “Energy and economic comparison of five mixed-refrigerant natural gas liquefaction processes,” Energy Conversion and Management, vol. 272, p. 116364, 2022. [CrossRef] [Google Scholar]
- S. Jarungthammachote, “Optimal interstage pressures of multistage compression with intercooling processes,” Thermal Science and Engineering Progress, vol. 29, p. 101202, 2022. [CrossRef] [Google Scholar]
- H. Lugo-Méndez, T. Lopez-Arenas, A. Torres-Aldaco, E. V. Torres-González, M. Sales-Cruz, and R. Lugo-Leyte, “Interstage pressures of a multistage compressor with inter-cooling,” Entropy, vol. 23, no. 3, p. 351, 2021. [CrossRef] [PubMed] [Google Scholar]
- R. Ahmed, S. Mahadzir, A. Mota-Babiloni, M. Al-Amin, A. Y. Usmani, Z. Ashraf Rana, H. Yassin, S. Shaik, and F. Hussain, “4e analysis of a two-stage refrigeration system through surrogate models based on response surface methods and hybrid grey wolf optimizer,” PloS one, vol. 18, no. 2, p. e0272160, 2023. [CrossRef] [PubMed] [Google Scholar]
- Muhammad Abdul Qyyum, Q. Kinza, and M. Lee, “Comprehensive Review of the Design Optimization of Natural Gas Liquefaction Processes: Current Status and Perspectives,” 2018. [Google Scholar]
- R. Ahmed, G. P. Rangaiah, S. Mahadzir, S. Mirjalili, M. H. Hassan, and S. Kamel, “Memory, evolutionary operator, and local search based improved grey wolf optimizer with linear population size reduction technique,” Knowledge-Based Systems, p. 110297, 2023. [Google Scholar]
- M. S. Khan, S. Lee, and M. Lee, “Optimization of single mixed refrigerant natural gas liquefaction plant with nonlinear programming,” Asia-Pacific Journal of Chemical Engineering, vol. 7, pp. S62–S70, 2012. [Google Scholar]
- P. E. Wahl, S. W. Løvseth, and M. J. Mølnvik, “Optimization of a simple lng process using sequential quadratic programming,” Computers & chemical engineering, vol. 56, pp. 27–36, 2013. [CrossRef] [Google Scholar]
- J.-H. Hwang, M.-I. Roh, and K.-Y. Lee, “Determination of the optimal operating conditions of the dual mixed refrigerant cycle for the lng fpso topside liquefaction process,” Computers & Chemical Engineering, vol. 49, pp. 25–36, 2013. [CrossRef] [Google Scholar]
- S. F. Mussati, S. Cignitti, S. S. Mansouri, K. V. Gernaey, T. Morosuk, and M. C. Mussati, “Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization,” Energy Conversion and Management, vol. 158, pp. 359–372, 2018. [CrossRef] [Google Scholar]
- M. M. H. Shirazi and D. Mowla, “Energy optimization for liquefaction process of natural gas in peak shaving plant,” Energy, vol. 35, no. 7, pp. 2878–2885, 2010. [CrossRef] [Google Scholar]
- M. S. Khan and M. Lee, “Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints,” Energy, vol. 49, pp. 146–155, 2013. [CrossRef] [Google Scholar]
- E. Primabudi, T. Morosuk, and G. Tsatsaronis, “Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process,” Energy, vol. 185, pp. 492–504, 2019. [CrossRef] [Google Scholar]
- A. Alabdulkarem, A. Mortazavi, Y. Hwang, R. Radermacher, and P. Rogers, “Optimization of propane pre-cooled mixed refrigerant lng plant,” Applied thermal engineering, vol. 31, no. 6-7, pp. 1091–1098, 2011. [CrossRef] [Google Scholar]
- A. Aspelund, T. Gundersen, J. Myklebust, M. P. Nowak, and A. Tomasgard, “An optimization-simulation model for a simple lng process,” Computers & Chemical Engineering, vol. 34, no. 10, pp. 1606–1617, 2010. [CrossRef] [Google Scholar]
- F. Almeida-Trasvina, R. Smith, and M. Jobson, “Development of an energy-efficient single mixed refrigerant cycle for small-scale lng production,” Industrial & Engineering Chemistry Research, vol. 60, no. 32, pp. 12049–12067, 2021. [CrossRef] [Google Scholar]
- K. Tak, I. Lee, H. Kwon, J. Kim, D. Ko, and I. Moon, “Comparison of multistage compression configurations for single mixed refrigerant processes,” Industrial & Engineering Chemistry Research, vol. 54, no. 41, pp. 9992–10000, 2015. [CrossRef] [Google Scholar]
- A. Ebrahimi, J. Tamnanloo, S. H. Mousavi, E. Soroodan Miandoab, E. Hosseini, H. Ghasemi, and S. Mozaffari, “Discrete-continuous genetic algorithm for designing a mixed refrigerant cryogenic process,” Industrial & Engineering Chemistry Research, vol. 60, no. 20, pp. 7700–7713, 2021. [CrossRef] [Google Scholar]
- G. C. Lee, R. Smith, and X. X. Zhu, “Optimal synthesis of mixed-refrigerant systems for low-temperature processes,” Ind. Eng. Chem. Res., vol. 41, no. 20, pp. 5016–5028, 2002. [CrossRef] [Google Scholar]
- T. He, Z. Liu, Y. Ju, and A. M. Parvez, “A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile lng plant,” Energy, vol. 167, pp. 1–12, 2019. [CrossRef] [Google Scholar]
- A. H. Aslambakhsh, M. A. Moosavian, M. Amidpour, M. Hosseini, and S. AmirAfshar, “Global cost optimization of a mini-scale liquefied natural gas plant,” Energy, vol. 148, pp. 1191–1200, 2018. [CrossRef] [Google Scholar]
- I. Lee and I. Moon, “Total cost optimization of a single mixed refrigerant process based on equipment cost and life expectancy,” Industrial & Engineering Chemistry Research, vol. 55, no. 39, pp. 10336–10343, 2016. [CrossRef] [Google Scholar]
- Q. Li and Y. Ju, “Design and analysis of liquefaction process for offshore associated gas resources,” Applied Thermal Engineering, vol. 30, no. 16, pp. 2518–2525, 2010. [CrossRef] [Google Scholar]
- K. Qadeer, M. A. Qyyum, and M. Lee, “Krill-herd-based investigation for energy saving opportunities in offshore liquefied natural gas processes,” Industrial & Engineering Chemistry Research, vol. 57, no. 42, pp. 14162–14172, 2018. [CrossRef] [Google Scholar]
- M. A. Qyyum, N. V. D. Long, M. Lee, et al., “Design optimization of single mixed refrigerant lng process using a hybrid modified coordinate descent algorithm,” Cryo-genics, vol. 89, pp. 131–140, 2018. [CrossRef] [Google Scholar]
- R. Raman and I. E. Grossmann, “Modelling and computational techniques for logic based integer programming,” Computers and Chemical Engineering, vol. 18, no. 7, pp. 563–578, 1994. [CrossRef] [Google Scholar]
- F. Trespalacios and I. E. Grossmann, “Chapter 24: Review of Mixed-Integer Nonlinear Optimization and Generalized Disjunctive Programming Applications in Process Systems Engineering,” Advances and Trends in Optimization with Engineering Applications, pp. 315–329, 2017. [Google Scholar]
- Q. Chen and I. Grossmann, “Modern modeling paradigms using generalized disjunctive programming,” Processes, vol. 7, no. 11, 2019. [Google Scholar]
- Q. Chen and I. E. Grossmann, “Effective Generalized Disjunctive Programming Models for Modular Process Synthesis,” Industrial and Engineering Chemistry Research, vol. 58, pp. 5873–5886, apr 2019. [CrossRef] [Google Scholar]
- F. Matovu, S. Mahadzir, R. Ahmed, and N. E. M. Rozali, “Synthesis and optimization of multilevel refrigeration systems using generalized disjunctive programming.,” Computers & Chemical Engineering, p. 107856, 2022. [Google Scholar]
- F. D. Nogal, J.-K. Kim, S. Perry, and R. Smith, “Optimal design of mixed refrigerant cycles,” Industrial & Engineering Chemistry Research, vol. 47, no. 22, pp. 8724–8740, 2008. [CrossRef] [Google Scholar]
- I. López-Paniagua, J. Rodríguez-Martín, S. Sánchez-Orgaz, and J. J. Roncal-Casano, “Step by step derivation of the optimum multistage compression ratio and an application case,” Entropy, vol. 22, no. 6, p. 678, 2020. [CrossRef] [PubMed] [Google Scholar]
- F. Matovu, S. Mahadzir, N. E. Mohammad Rozali, and C. Yoke Yi, “Analysis and optimization of multistage mixed refrigerant systems using generalized disjunctive programming,” Process Integration and Optimization for Sustainability, pp. 1–16, 2023. [Google Scholar]
- F. A. Aly and L. L. Lee, “Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy,” Fluid Phase Equilibria, vol. 6, no. 3-4, pp. 169–179, 1981. [CrossRef] [Google Scholar]
- K. D. Dahm and D. P. Visco, Fundamentals of chemical engineering thermodynamics. Cengage Learning, 2014. [Google Scholar]
- W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, and J. D. Siirola, Pyomo-optimization modeling in python, vol. 67. Springer, 2017. [CrossRef] [Google Scholar]
- Q. Chen, E. S. Johnson, J. D. Siirola, and I. E. Grossmann, “Pyomo.GDP: Disjunctive Models in Python,” Computer Aided Chemical Engineering, vol. 44, pp. 889–894, 2018. [CrossRef] [Google Scholar]
- Q. Chen, E. S. Johnson, D. E. Bernal, R. Valentin, S. Kale, J. Bates, J. D. Siirola, and I. E. Grossmann, “Pyomo.GDP: an ecosystem for logic based modeling and optimization development,” Optimization and Engineering, pp. 1–36, apr 2021. [Google Scholar]
- S. Vigerske and A. Gleixner, “SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework,” Optimization Methods and Software, vol. 33, no. 3, pp. 563–593, 2018. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.