Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00079
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/202346900079
Published online 20 December 2023
  1. “Le Secteur Agricole Marocain: Tendances structurelles, enjeux et perspectives de développement,” 2019. https://www.finances.gov.ma/Publication/depf/2019/Le%20secteur%20agricole%20marocain.pdf (accessed Jan. 23, 2023). [Google Scholar]
  2. R. Akhter and S. A. Sofi, “Precision agriculture using IoT data analytics and machine learning,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 5602–5618, Sep. 2022, doi: 10.1016/j.jksuci.2021.05.013. [Google Scholar]
  3. J. F. S. Gomes and F. R. Leta, “Applications of computer vision techniques in the agriculture and food industry: a review,” Eur. Food Res. Technol., vol. 235, no. 6, pp. 989–1000, Oct. 2012, doi: 10.1007/s00217-012-1844-2. [CrossRef] [Google Scholar]
  4. Karan Owalekar, Junaid Shaikh, Meghna Daftary, and Megha Gupta, “An Agri vigilance System based on Computer Vision and Deep Learning,” J. Inform. Electr. Electron. Eng. JIEEE, vol. 2, no. 2, pp. 1–8, Jun. 2021, doi: 10.54060/jieee/002.02.017. [Google Scholar]
  5. M. Addanki, P. Patra, and P. Kandra, “Recent advances and applications of artificial intelligence and related technologies in the food industry,” Appl. Food Res., vol. 2, no. 2, p. 100126, Dec. 2022, doi: 10.1016/j.afres.2022.100126. [CrossRef] [Google Scholar]
  6. Bruno M. Moreno and Paulo E. Cruvinel, “Computer Vision System for Identifying on Farming Weed Species,” Int. Comput. Sci. Conf., Jan. 2022, doi: 10.1109/icsc52841.2022.00054. [Google Scholar]
  7. L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and D. Bochtis, “Machine Learning in Agriculture: A Comprehensive Updated Review,” Sensors, vol. 21, no. 11, p. 3758, May 2021, doi: 10.3390/s21113758. [CrossRef] [PubMed] [Google Scholar]
  8. K. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine Learning in Agriculture: A Review,” Sensors, vol. 18, no. 8, p. 2674, Aug. 2018, doi: 10.3390/s18082674. [CrossRef] [Google Scholar]
  9. B. I. Akhigbe, K. Munir, O. Akinade, L. Akanbi, and L. O. Oyedele, “IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends,” Big Data Cogn. Comput., vol. 5, no. 1, p. 10, Feb. 2021, doi: 10.3390/bdcc5010010. [CrossRef] [Google Scholar]
  10. R. Sharma, S. S. Kamble, A. Gunasekaran, V. Kumar, and A. Kumar, “A systematic literature review on machine learning applications for sustainable agriculture supply chain performance,” Comput. Oper. Res., vol. 119, p. 104926, Jul. 2020, doi: 10.1016/j.cor.2020.104926. [CrossRef] [Google Scholar]
  11. J. Bao and Q. Xie, “Artificial intelligence in animal farming: A systematic literature review,” J. Clean. Prod., vol. 331, p. 129956, Jan. 2022, doi: 10.1016/j.jclepro.2021.129956. [CrossRef] [Google Scholar]
  12. A. V. Petrov, A. A. Petrov, and A. Popov, “Overview of the application of computer vision technology in fish farming,” E3S Web Conf., vol. 175, p. 02015, Jan. 2020, doi: 10.1051/e3sconf/202017502015. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Y. Mekonnen, S. Namuduri, L. Burton, A. Sarwat, and S. Bhansali, “Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture,” J. Electrochem. Soc., vol. 167, no. 3, p. 037522, Jan. 2020, doi: 10.1149/2.0222003JES. [CrossRef] [Google Scholar]
  14. T. Brosnan and D.-W. Sun, “Improving quality inspection of food products by computer vision––a review,” J. Food Eng., vol. 61, no. 1, pp. 3–16, Jan. 2004, doi: 10.1016/S0260-8774(03)00183-3. [CrossRef] [Google Scholar]
  15. A. Cravero, S. Pardo, S. Sepúlveda, and L. Muñoz, “Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review,” Agronomy, vol. 12, no. 3, p. 748, 2022. [CrossRef] [Google Scholar]
  16. A. Cravero and S. Sepúlveda, “Use and adaptations of machine learning in big data—Applications in real cases in agriculture,” Electronics, vol. 10, no. 5, p. 552, 2021. [CrossRef] [Google Scholar]
  17. R. Ly, “Machine learning challenges and opportunities in the african agricultural sector--A general perspective,” ArXiv Prepr. ArXiv210705101, 2021. [Google Scholar]
  18. R. Ly, “Machine learning challenges and opportunities in the african agricultural sector--A general perspective,” ArXiv Prepr. ArXiv210705101, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.