Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00100
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202346900100
Published online 20 December 2023
  1. G. E. Iyawa, M. Herselman, et A. Botha, « Digital Health Innovation Ecosystems: From Systematic Literature Review to Conceptual Framework », Procedia Computer Science, vol. 100, p. 244‑252, 2016. [CrossRef] [Google Scholar]
  2. V. Özdemir, « Special Issue: Digital Health in Times of COVID-19 », OMICS: A Journal of Integrative Biology, vol. 24, no 5, p. 229‑230, mai 2020. [CrossRef] [Google Scholar]
  3. E. A. Dick, A. Raithatha, L. Musker, J. Redhead, A. Mehta, et D. Amiras, « Remote reporting in the COVID-19 era: from pilot study to practice », Clinical Radiology, vol. 75, no 9, p. 710.e5-710.e8, sept. 2020, doi: 10.1016/j.crad.2020.06.016. [CrossRef] [PubMed] [Google Scholar]
  4. L. Tabacof et al., « Remote Patient Monitoring for Home Management of Coronavirus Disease 2019 in New York: A Cross-Sectional Observational Study », Telemedicine and e-Health, p. tmj.2020.0339, oct. 2020, doi: 10.1089/tmj.2020.0339. [Google Scholar]
  5. E. S. Izmailova, R. Ellis, et C. Benko, « Remote Monitoring in Clinical Trials During the COVID‐19 Pandemic », Clin Transl Sci, p. cts.12834, juill. 2020, doi: 10.1111/cts.12834. [Google Scholar]
  6. M. Medina et al., « Home monitoring for COVID-19 », CCJM, p. ccjom;ccjm.87a.ccc028v3, mai 2020, doi: 10.3949/ccjm.87a.ccc028. [Google Scholar]
  7. J. Mabrouki, M. Azrour, D. Dhiba, et S. E. Hajjaji, « High-Fidelity Intelligence Ventilator to Help Infect with COVID-19 Based on Artificial Intelligence », in Intelligent Data Analysis for COVID-19 Pandemic, M. Niranjanamurthy, S. Bhattacharyya, et N. Kumar, Éd., in Algorithms for Intelligent Systems., Singapore: Springer, 2021, p. 83‑93. doi: 10.1007/978-981-16-1574-0_4. [CrossRef] [Google Scholar]
  8. H. Jeong, J. A. Rogers, et S. Xu, « Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities », Sci. Adv., vol. 6, no 36, p. eabd4794, sept. 2020, doi: 10.1126/sciadv.abd4794. [Google Scholar]
  9. M. Otoom, N. Otoum, M. A. Alzubaidi, Y. Etoom, et R. Banihani, « An IoT-based framework for early identification and monitoring of COVID-19 cases », Biomedical Signal Processing and Control, vol. 62, p. 102149, sept. 2020, doi: 10.1016/j.bspc.2020.102149. [CrossRef] [PubMed] [Google Scholar]
  10. R. Scala, « Challenges on non-invasive ventilation to treat acute respiratory failure in the elderly », BMC Pulmonary Medicine, vol. 16, no 1, p. 150, nov. 2016, doi: 10.1186/s12890-016-0310-5. [CrossRef] [PubMed] [Google Scholar]
  11. C. Massaroni, A. Nicolò, E. Schena, et M. Sacchetti, « Remote Respiratory Monitoring in the Time of COVID-19 », Front. Physiol., vol. 11, p. 635, mai 2020, doi: 10.3389/fphys.2020.00635. [CrossRef] [Google Scholar]
  12. O. O’Carroll et al., « Remote monitoring of oxygen saturation in individuals with COVID-19 pneumonia », Eur Respir J, vol. 56, no 2, p. 2001492, août 2020, doi: 10.1183/13993003.01492-2020. [CrossRef] [PubMed] [Google Scholar]
  13. C. Massaroni, A. Nicolò, D. Lo Presti, M. Sacchetti, S. Silvestri, et E. Schena, « Contact-Based Methods for Measuring Respiratory Rate », Sensors (Basel), vol. 19, no 4, févr. 2019, doi: 10.3390/s19040908. [Google Scholar]
  14. K. E. Müller, « Artificial respiration in severe COVID-19 cases - A beneficial or deleterious treatment », Clin Microbiol Infect Dis, vol. 6, no 1, 2021, doi: 10.15761/CMID.1000186. [Google Scholar]
  15. « Artificial Respiration - an overview | ScienceDirect Topics ». Consulté le: 29 septembre 2023. [En ligne]. Disponible sur: https://www.sciencedirect.com/topics/medicine-and-dentistry/artificial-respiration [Google Scholar]
  16. J. S. Suri et al., « A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence », Computers in Biology and Medicine, vol. 130, p. 104210, mars 2021, doi: 10.1016/j.compbiomed.2021.104210. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.