Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00103
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202346900103
Published online 20 December 2023
  1. Z. J. De Souza, Bioelectricity of sugarcane: a case study from Brazil and perspectives, Sugarcane Biorefinery, Technology and Perspectives, Elsevier, p. 255-279, (2020), doi: 10.1016/B978-0-12-814236-3.00013-5. [CrossRef] [Google Scholar]
  2. A. Šimelytė, Promotion of renewable energy in Morocco, Energy Transformation Towards Sustainability, Elsevier, p. 249-287, (2020), doi: 10.1016/B978-0-12-817688-7.00013-6. [Google Scholar]
  3. Nikkhah, M. Khojastehpour, et M. H. Abbaspour-Fard, Hybrid landfill gas emissions modeling and life cycle assessment for determining the appropriate period to install biogas system, J. Clean. Prod., p. 772-780, juin 2018, 185 (2018), doi: 10.1016/j.jclepro.2018.03.080. [CrossRef] [Google Scholar]
  4. F. Z. M. N. Bargach, Assessment and characterization of the physicochemical parameters of Moroccan leachate during the confinement period (coronavirus), Moroc. J. Chem., p.370-379, août 2021, 9 (2021), doi: 10.48317/IMIST.PRSM/MORJCHEM-V9I2.27594. [Google Scholar]
  5. Q. Feng & Y. Lin, Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review, Renew. Sustain. Energy Rev., p. 1272-1287, sept. 2017, 77 (2017), doi: 10.1016/j.rser.2017.03.022. [CrossRef] [Google Scholar]
  6. Y. Ge & al., Modification of anaerobic digestion model No.1 with Machine learning models towards applicable and accurate simulation of biomass anaerobic digestion, Chem. Eng. J., p. 140-369, févr. 2023, 454 (2023), doi: 10.1016/j.cej.2022.140369. [Google Scholar]
  7. Global Methane Initiative, Méthane issu des sites d’enfouissement: Réduction des émissions, avancement des techniques de récupération et valorisation, sept. 2011, 4 (2011), available on : www.globalmethane.org [Google Scholar]
  8. N. Yeşiller, J. L. Hanson, D. C. Manheim, S. Newman, & A. Guha, Assessment of methane emissions from a California landfill using concurrent experimental, inventory, and modeling approaches, Waste Manag., p. 146-159, déc. 2022, 154 (2022), doi: 10.1016/j.wasman.2022.09.024. [CrossRef] [Google Scholar]
  9. N. de Souza Ribeiro, R. M. Barros, I. F. S. dos Santos, G. L. T. Filho, & S. P. G. da Silva, Electric energy generation from biogas derived from municipal solid waste using two systems: landfills and anaerobic digesters in the states of São Paulo and Minas Gerais, Brazil, Sustain. Energy Technol. Assess., p. 101-552, déc. 2021, 48 (2021), doi: 10.1016/j.seta.2021.101552. [Google Scholar]
  10. D. Cudjoe & M. S. Han, Economic and environmental assessment of landfill gas electricity generation in urban districts of Beijing municipality, Sustain. Prod. Consum., p. 128‑137, juill. 2020, 23 (2020), doi: 10.1016/j.spc.2020.04.010. [CrossRef] [Google Scholar]
  11. N. J. Themelis & P. A. Ulloa, Methane generation in landfills, Renew. Energy, p. 1243‑1257, juin 2007, 32 (2007), doi: 10.1016/j.renene.2006.04.020. [CrossRef] [Google Scholar]
  12. L. Li, A Study of the Waste-To-Energy Industry in Beijing City (Earth and Environmental Engineering, p.1‑38, Columbia, 2019), available on : https://gwcouncil.org/wp-content/uploads/2020/01/Thesis_Lu-Li-1.pdf [Google Scholar]
  13. World Bioenergy Association, GLOBAL BIOENERGY STATISTICS 2020, p.1-64,(2020), available on https://www.worldbioenergy.org/uploads/201210%20WBA%20GBS%202020.pdf [Google Scholar]
  14. Z. Barahmand & G. Samarakoon, Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review, Fermentation, p. 6-24, nov. 2022, 8 (2022), doi: 10.3390/fermentation8110624. [Google Scholar]
  15. Q. Xu, J. Qin, & J. H. Ko, Municipal solid waste landfill performance with different biogas collection practices: Biogas and leachate generations, Journal of Cleaner Production, p. 446‑454, juin 2019, 222 (2019), doi: 10.1016/j.jclepro.2019.03.083. [CrossRef] [Google Scholar]
  16. E. Ahmed, M. Mostapha, R. Mohammed, D. Tahiri Zakariyae, & M. Abderrahim, Tassements référentiels sur la décharge réhabilitée d’Agadir et suivi des biogaz, MATEC Web Conf., p. 03-13, 11 (2014), doi: 10.1051/matecconf/20141103013. [Google Scholar]
  17. V. A. Lomazov, V. I. Lomazova, I. V. Miroshnichenko, D. A. Petrosov, & A. L. Mironov, Optimum planning of experimental research at the biogas plant, IOP Conf. Ser.: Earth Environ. Sci., p. 012-111, févr. 2021, 659 (2021), doi: 10.1088/1755-1315/659/1/012111 [CrossRef] [Google Scholar]
  18. K. Ivanovs, K. Spalvins, & D. Blumberga, Approach for modelling anaerobic digestion processes of fish waste, Energy Procedia, p. 390-396, août 2018, 147 (2018) doi: 10.1016/j.egypro.2018.07.108. [CrossRef] [Google Scholar]
  19. S. Achinas & G. J. W. Euverink, Theoretical analysis of biogas potential prediction from agricultural waste, Resour.-Effic. Technol., p. 143-147, sept. 2016, 2 (2016) doi: 10.1016/j.reffit.2016.08.001. [Google Scholar]
  20. X. Pan & al., Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization, Bioresour. Technol., p. 796-806, oct. 2016, 218 (2016), doi: 10.1016/j.biortech.2016.07.032. [CrossRef] [Google Scholar]
  21. M. Gollapalli & S. H. Kota, Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models, Environ. Pollut., p. 174‑180, mars 2018, 234 (2018), doi: 10.1016/j.envpol.2017.11.064. [CrossRef] [Google Scholar]
  22. A.Sil, S. Kumar, & J. W. C. Wong, Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills, Bioresour. Technol., p. 97‑99, sept. 2014, 168 (2014), doi: 10.1016/j.biortech.2014.03.035. [CrossRef] [Google Scholar]
  23. A.Ramprasad, H. C. Teja, V. Gowtham, & V. Vikas, Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model, MethodsX, p. 101-869, 9 (2022), doi: 10.1016/j.mex.2022.101869. [CrossRef] [PubMed] [Google Scholar]
  24. S. Kliem, M. Kreutzbruck, & C. Bonten, Review on the Biological Degradation of Polymers in Various Environments, Materials, p. 45-86, oct. 2020, 13 (2020), doi: 10.3390/ma13204586. [CrossRef] [PubMed] [Google Scholar]
  25. N. S. E. M. Yasim & F. Buyong, Comparative of experimental and theoretical biochemical methane potential generated by municipal solid waste, Environmental Advances, p. 100-345, avr. 2023, 11 (2023), doi: 10.1016/j.envadv.2023.100345. [Google Scholar]
  26. S. Begum, M. G. Rasul, & D. Akbar, A Numerical Investigation of Municipal Solid Waste Gasification Using Aspen Plus, Procedia Eng., p. 710‑717, 90 (2014), doi: 10.1016/j.proeng.2014.11.800. [CrossRef] [Google Scholar]
  27. L. A. Pacheco, J. Tamayo-Peña, B. D. S. Moraes, & T. T. Franco, Bioenergy, Electricity, Biogas Production, and Emission Reduction Using the Anaerobic Digestion of Organic Municipal Solid Waste in Campinas, One of the Largest Brazilian Cities, Processes, p. 26-62, déc. 2022, 10 (2022), doi: 10.3390/pr10122662. [Google Scholar]
  28. Sohoo, M. Ritzkowski, Z. A. Sohu, S. Ö. Cinar, Z. K. Chong, & K. Kuchta, Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan, Energies, p. 24-44, avr. 2021, 14 (2021), doi: 10.3390/en14092444. [CrossRef] [Google Scholar]
  29. W. W. Oduor, S. M. Wandera, S. I. Murunga, & J. M. Raude, Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery, Heliyon, p. 10-58, sept. 2022, 8 (2022), doi: 10.1016/j.heliyon.2022.e10580. [Google Scholar]
  30. A.Nikkhah, M. Khojastehpour, & M. H. Abbaspour-Fard, Hybrid landfill gas emissions modeling and life cycle assessment for determining the appropriate period to install biogas system, Journal of Cleaner Production, p. 772‑780, juin 2018, 185 (2018), doi: 10.1016/j.jclepro.2018.03.080. [CrossRef] [Google Scholar]
  31. M. Delgado, A. López, A. L. Esteban-García, & A. Lobo, The importance of particularising the model to estimate landfill GHG emissions, Journal of Environmental Management, p. 116-600, janv. 2023, 325 (2023), doi: 10.1016/j.jenvman.2022.116600. [CrossRef] [PubMed] [Google Scholar]
  32. EL Ajraoui, J. Douch & M. Hamdani, Characterization of the technical landfill biogas of the Greater Agadir (Morocco) and its thermal valorization for the treatment of leachates by forced evaporation, EWASH & TI Journal, p. 160-169, 3 (2019) [Google Scholar]
  33. O. Zaraali, O. Elasri, M. Saihi, & D. Serrar, Setting up and maintaining a waste management protocol makes the Mdiq provincial hospital center an environmental company, Materials Today: Proceedings, p. 1143‑1150, 13 (2019), doi: 10.1016/j.matpr.2019.04.082. [CrossRef] [Google Scholar]
  34. N. Ketut, A. Sudrajad, M. Permana, & H. Haryanto, Experimental Study of Anaerobic Digester Biogas Method Using Leachate from Landfill Municipal Waste, n o 19, 12 (2017) [Google Scholar]
  35. A.Kumar, S. Bhardwaj, & S. R. Samadder, Evaluation of methane generation rate and energy recovery potential of municipal solid waste using anaerobic digestion and landfilling: A case study of Dhanbad, India, Waste Manag Res, p. 407-417, févr. 2023, 41 (2023), doi: 10.1177/0734242X221122494. [Google Scholar]
  36. M. Liao & Y. Yao, Applications of artificial intelligence-based modeling for bioenergy systems: A review, GCB Bioenergy, p. 774‑802, mai 2021, 13 (2021), doi: 10.1111/gcbb.12816. [CrossRef] [Google Scholar]
  37. Y. Cheng, C. Zhao, P. Neupane, B. Benjamin, J. Wang, & T. Zhang, Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis, Energies, p. 1235, janv. 2023, 16 (2023) doi: 10.3390/en16031235. [CrossRef] [Google Scholar]
  38. Eryildiz, Lukitawesa, & M. J. Taherzadeh, Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion, Bioresour. Technol., p. 122-800, avr. 2020, 302 (2020), doi: 10.1016/j.biortech.2020.122800. [CrossRef] [Google Scholar]
  39. N. Ketut, A. Sudrajad, M. Permana, & H. Haryanto, Experimental Study of Anaerobic Digester Biogas Method Using Leachate from Landfill Municipal Waste, n o 19, 12 (2017). [Google Scholar]
  40. C. Pevida & F. Rubiera, Adsorption Processes for CO2 Capture from Biogas Streams, Energies, no 2, janv. 2023, 16 (2023), doi: 10.3390/en16020667. [PubMed] [Google Scholar]
  41. H. Wang, R. A. Larson, & T. Runge, Impacts to hydrogen sulfide concentrations in biogas when poplar wood chips, steam treated wood chips, and biochar are added to manure-based anaerobic digestion systems, Bioresour. Technol. Rep., p. 100-232, sept. 2019, 7 (2019), doi: 10.1016/j.biteb.2019.100232. [Google Scholar]
  42. G. Tian, M. Yeung, & J. Xi, H2S Emission and Microbial Community of Chicken Manure and Vegetable Waste in Anaerobic Digestion: A Comparative Study, Fermentation, no 2, p. 169, févr. 2023, 9 (2023), doi: 10.3390/fermentation9020169. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.