Open Access
Issue
E3S Web Conf.
Volume 470, 2023
IVth International Conference “Energy Systems Research” (ESR-2023)
Article Number 01005
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202347001005
Published online 21 December 2023
  1. H. v. Bekkum, J. Jansen, E. Flanigen, Introduction to zeolite science and practice (1991). [Google Scholar]
  2. A. Dyer, An introduction to zeolite molecular sieves (1988). [Google Scholar]
  3. A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical reviews, vol. 97, No 6, 2373-2420 (1997). [CrossRef] [PubMed] [Google Scholar]
  4. G. A. Ozin, A. Kuperman, and A. Stein, “Advanced zeolite, materials science,” Angewandte Chemie International Edition in English, vol. 28, No 3, 359-376 (1989). [CrossRef] [Google Scholar]
  5. K. Egeblad, C. H. Christensen, M. Kustova, and C.H. Christensen, Templating mesoporous zeolites, Chemistry of Materials, vol. 20, No. 3, 946-960 (2008). [CrossRef] [Google Scholar]
  6. M. G. Clerici, “Zeolites for fine chemicals production,” Topics in catalysis, vol. 13, No. 4, 373-386 (2000). [CrossRef] [Google Scholar]
  7. J. Kim, M. Choi, and R. Ryoo, Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process, Journal of Catalysis, vol. 269, No. 1, 219-228 (2010). [CrossRef] [Google Scholar]
  8. X. Zhao, X. Guo, and X. Wang, Characterization of modified nanoscale ZSM-5 catalyst and its application in FCC gasoline upgrading process, Energy & fuels, vol. 20, No. 4, 1388-1391 (2006). [CrossRef] [Google Scholar]
  9. W. Pang, J. Yu, R. Xu, Q. Huo, and J. Chen, Chemistry of zeolites and related porous materials: synthesis and structure. John Wiley & Sons (2009). [Google Scholar]
  10. A. Arafat, J. Jansen, A. Ebaid, and H. Van Bekkum, Microwave preparation of zeolite Y and ZSM-5, Zeolites, vol. 13, No. 3, 162-165 (1993). [CrossRef] [Google Scholar]
  11. K.-K. Kang, C.-H. Park, and W.-S. Ahn, Microwave preparation of a titaniumsubstituted mesoporous molecular sieve, Catalysis Letters, vol. 59, 45-49 (1999). [CrossRef] [Google Scholar]
  12. B. L. Newalkar, S. Komarneni, and H. Katsuki, Rapid synthesis of mesoporous SBA15 molecular sieve by a microwave–hydrothermal process, Chemical Communications, No. 23, 2389-2390 (2000). [CrossRef] [Google Scholar]
  13. I. Pinilla-Herrero et al., Finding the active species: The conversion of methanol to aromatics over Zn-ZSM-5/alumina shaped catalysts, Journal of Catalysis, vol. 394, 416-428 (2021). [CrossRef] [Google Scholar]
  14. V. Calsavara, M. L. Baesso, and N.R.C. Fernandes-Machado, Transformation of ethanol into hydrocarbons on ZSM-5 zeolites modified with iron in different ways, Fuel, vol. 87, No. 8-9, 1628-1636 (2008). [CrossRef] [Google Scholar]
  15. A. G. Gayubo, A. Alonso, B. Valle, A. T. Aguayo, M. Olazar, and J. Bilbao, Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons, Fuel, vol. 89, No. 11, 3365-3372 (2010). [CrossRef] [Google Scholar]
  16. S. Bun, S. Nishiyama, S. Tsuruya, and M. Masai, Ethanol conversion over ionexchanged ZSM-5 zeolites, Applied catalysis, vol. 59, No. 1, 13-29 (1990). [CrossRef] [Google Scholar]
  17. J. W. Thybaut and xG.B. Marin, Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysts, Chemical Engineering & Technology, vol. 26, No. 4, 509-514 (2003). [CrossRef] [Google Scholar]
  18. V. Calsavara, M. L. Baesso, and N.R.C. Fernandes-Machado, Transformation of ethanol into hydrocarbons on ZSM-5 zeolites modified with iron in different ways, Fuel, vol. 87, No. 8, 1628-1636 (2008). [CrossRef] [Google Scholar]
  19. X. Wang et al., Mesoporous ZnZSM-5 zeolites synthesized by one-step desilication and reassembly: a durable catalyst for methanol aromatization, RSC advances, vol. 6, No. 28, 23428-23437 (2016). [CrossRef] [Google Scholar]
  20. Y. Ni et al., The preparation of nano-sized H [Zn, Al] ZSM-5 zeolite and its application in the aromatization of methanol, Microporous and Mesoporous Materials, vol. 143, No. 2-3, 435-442 (2011). [CrossRef] [Google Scholar]
  21. M. Bjørgen, F. Joensen, M. S. Holm, U. Olsbye, K.-P. Lillerud, and S. Svelle, Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH, Applied Catalysis A: General, vol. 345, No. 1, 43-50 (2008). [CrossRef] [Google Scholar]
  22. R. Sabarish and G. Unnikrishnan, Synthesis, characterization and evaluations of micro/mesoporous ZSM-5 zeolite using starch as bio template, SN Applied Sciences, vol. 1, No. 9, 989 (2019). [CrossRef] [Google Scholar]
  23. D. Valencia and T. Klimova, Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization, Applied catalysis B: environmental, vol. 129, 137-145 (2013). [CrossRef] [Google Scholar]
  24. G. Qi and R.T. Yang, Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia, Applied catalysis B: environmental, vol. 60, No. 1-2, 1322 (2005). [Google Scholar]
  25. Q. Wei et al., Synthesis of Ni-modified ZSM-5 zeolites and their catalytic performance in n-octane hydroconversion, Frontiers in Chemistry, vol. 8, 586445 (2020). [CrossRef] [PubMed] [Google Scholar]
  26. I. M. S. Anekwe, B. Oboirien, and Y.M. Isa, “Catalytic conversion of bioethanol over cobalt and nickel-doped HZSM-5 zeolite catalysts,” Biofuels, Bioproducts and Biorefining, (2023), https://doi.org/10.1002/bbb.2536. [Google Scholar]
  27. J. Schulz and F. Bandermann, Conversion of ethanol over zeolite H‐ZSM‐5, Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, vol. 17, No. 3, 179-186 (1994). [Google Scholar]
  28. L.-P. Wu, X.-J. Li, Z.-H. Yuan, and Y. Chen, The fabrication of TiO2-supported zeolite with core/shell heterostructure for ethanol dehydration to ethylene, Catalysis Communications, vol. 11, No. 1, 67-70 (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.