Open Access
Issue |
E3S Web of Conf.
Volume 374, 2023
The 3rd International Conference on Natural Resources and Life Sciences (NRLS) 2020
|
|
---|---|---|
Article Number | 00020 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/e3sconf/202337400020 | |
Published online | 21 March 2023 |
- O. Hoegh-Guldberg, J. F. Bruno, The impact of climate change on the world’s marine ecosystems, Science, 328: 1523–1528 (2010). https://doi.org/10.1126/science.1189930 [CrossRef] [PubMed] [Google Scholar]
- T. P. Hughes, K. D. Anderson, S. R. Connolly, S. F. Heron, J. T. Kerry, J. M. Lough, A. H. Baird, J. K. Baum, M. L. Berumen, T. C. Bridge, D.C. Claar, C. M. Eakin, J. P. Gilmour, N. A. J. Graham, H. Harrison, J. A. Hobbs, A. S. Hoey, M. Hoogenboom, R. J. Lowe, M. T. McCulloch, J. M. Pandolfi, M. Pratchett, V. Schoepf, G. Torda, S. K. Wilson, Spatial and temporal patterns of mass bleaching of corals in the Anthropocene, Science, 2018 Jan 5, 359(6371):80-83 (2018). https://doi.org/10.1126/science.aan8048 [CrossRef] [PubMed] [Google Scholar]
- A. Wenger, K. Fabricius, G. Jones, J. Brodie, Effects of sedimentation, eutrophication, and chemical pollution on coral reef fishes, In C. Mora (Ed.), Ecology of Fishes on Coral Reefs, Cambridge: Cambridge University Press, pp. 145-153 (2015). https://doi.org/10.1017/CBO9781316105412.017 [Google Scholar]
- M. J. Risk, E. Edinger, Impacts of Sediment on Coral Reefs, In: Hopley D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series, Springer, Dordrecht (2011). https://doi.org/10.1007/978-90-481-2639-2_25 [Google Scholar]
- J. P. Gilmour, L. D. Smith, A. J. Heyward, A. H. Baird, M. S. Pratchett, Recovery of an isolated coral reef system following severe disturbance, Science, 340: 69–71 (2013). https://doi.org/10.1126/science.1232310 [CrossRef] [PubMed] [Google Scholar]
- J. K. O’Leary, F. Micheli, L. Airoldi, C. Boch, G. De Leo, R. Elahi, F. Ferretti, N. A. J. Graham, S. Y. Litvin, N. H. Low, S. Lummis, K. J. Nickols, J. Wong, The Resilience of Marine Ecosystems to Climatic Disturbances, BioScience, Volume 67, Issue 3, Pages 208–220 (2017). https://doi.org/10.1093/biosci/biw161 [CrossRef] [Google Scholar]
- Y. Guan, S. Hohn, A. Merico, Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean, PLoS ONE, 10(6) (2015). https://doi.org/10.1371/journal.pone.0128831 [Google Scholar]
- C.C. Wallace, B. R. Rosen, Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals, Proc Biol Sci, 2006 Apr 22, 273(1589):975-82(2006). https://doi.org/10.1098/rspb.2005.3307 [Google Scholar]
- B. T. V. Zanten, P. J. H. V. Beukering, A. J. Wagtendonk, Coastal protection by coral reefs: A framework for spatial assessment and economic valuation, Ocean Coast., Manag., 96: 94–103 (2014). https://doi.org/10.1016/j.ocecoaman.2014.05.001 [CrossRef] [Google Scholar]
- Acropora Biological Review Team, Atlantic Acropora Status Review Document, Report to National Marine Fisheries Service, Southeast Regional Office, 152 p + App (2005). https://repository.library.noaa.gov/view/noaa/16200 [Google Scholar]
- World Register of Marine Species, Acropora Oken, 1815, (2020). http://www.marinespecies.org/aphia.php?p=taxdetails&id=205469 [Google Scholar]
- F. Patra, R. Lasabuda, A. S. Wantasen, Structure Of Mangrove Communities In Baturapa Village, Lolak District, Bolaang Mongondow Regency, Jurnal Perikanan dan Kelautan Tropis, 10(2):51-59 (2019). https://doi.org/10.35800/jpkt.10.2.2019.2444 [CrossRef] [Google Scholar]
- U.S. Fish, Wildlife Service, Endangered and Threatened Wildlife and Plants; Adding 20 Coral Species to the List of Endangered and Threatened Wildlife, Federal Register, 79 (219):67356–67359 (2013). Docket No. FWS-HQ-ES-2014-0055;450003011 [Google Scholar]
- B. Hermanto, The Growth of Acropora Formosa Fragment in Different Sizes Using Transplantation Method in Lembeh Strait, Bitung, Sulawesi Utara: LIPI (2015). https://doi.org/10.35800/jip.3.2.2015.13224 [Google Scholar]
- F. H. Nurman, B. Sadarun, R.D. Palupi, Survival Rate of Coral Acropora formosa as Transplantation Results in Sawapudo Waters Soropia District, Jurnal Sapa Laut (Jurnal Ilmu Kelautan), 2 (4):119-125 (2017). http://dx.doi.org/10.33772/jsl.v2i4.3820 [Google Scholar]
- A. S. Panggabean, Setiadji, Bentuk pertumbuhan karang daerah tertutup dan terbuka di perairan sekitar Pulau Pamegaran, Teluk Jakarta, Jurnal Bawal, 3 (4):117-125 (2011) http://ejournal-balitbang.kkp.go.id/index.php/bawal/article/download/3504/3013 [Google Scholar]
- Suryanti, Supriharyono, R. Yulia, The depth influence to the morphology and abundance of corals at Cemara Kecil Island, Karimunjawa National Park, Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 7 (1):63-69 (2011). https://doi.org/10.14710/ijfst.7.1.63-69\ [Google Scholar]
- E. G. Fahy, R. E. Dodge, D. P. Fahy, T. P. Quinn, D. S. Gilliam, R. E. Spieler, Growth and survivorship of scleractinian coral transplants and the effectiveness of plugging core holes in transplant donor colonies, (2006). https://nsuworks.nova.edu/occ_facpresentations/44/ [Google Scholar]
- Jipriandi, A. Pratomo, H. Irawan, Pertumbuhan karang Acropora formosa Dengan Teknik Transplantasi Pada Ukuran Fragmen yang Berbeda, (2013). http://jurnal.umrah.ac.id/?p=1344 [Google Scholar]
- T. Hughes, M. Barnes, D. Bellwood, Coral reefs in the Anthropocene, Nature 546: 82–90 (2017). https://doi.org/10.1038/nature22901 [CrossRef] [PubMed] [Google Scholar]
- N. Fadli, A. Kunzmann, K. von Jutrzenka, E. Rudi, Z. A. Muchlisin, A preliminary study of corals recruitment using coral rubbles substrate in Seribu Island waters, Indonesia, AACL Bioflux, Aquaculture, Aquarium, Conservation & Legislation, 6 (3),246-252 (2013) http://www.bioflux.com.ro/docs/2013.246-252.pdf [Google Scholar]
- C. A. Page, E. M. Muller, D. E. Vaughan, Microfragmenting For The Successful Restoration ff Slow Growing Massive Coral, Ecological Engineering, 123: 86 – 94 (2018). https://doi.org/10.1016/j.ecoleng.2018.08.017 [CrossRef] [Google Scholar]
- N. Mimura, Sea-level rise caused by climate change and its implications for society, Proc Jpn Acad Ser B Phys Biol Sci., 89 (7):281-301 (2013). https://doi.org/10.2183/pjab.89.281 [CrossRef] [PubMed] [Google Scholar]
- E. Nepote, C. N. Bianchi, M. Chiantore, C. Morri, M. Montefalcone, Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted, Est. Coast, Shelf Sci., 178: 86–91 (2016). https://doi.org/10.1016/j.ecss.2016.05.021 [CrossRef] [Google Scholar]
- N. Knowlton, R.E. Brainard, R. Fisher, M. Moews, L. Plaisance, M.J. Caley, Coral reef biodiversity Life in the World’s Oceans: Diversity, Distribution, and Abundance, John Wiley and Sons, United Kingdom, pp. 65-77 (2010). https://doi.org/10.1002/9781444325508.ch4 [Google Scholar]
- S. D. Donner, Coping with Commitment: Projected Thermal Stress on Coral Reefs under Different Future Scenarios, plosOne (2009). https://doi.org/10.1371/journal.pone.0005712 [Google Scholar]
- A. Haris, Transplantasi Karang Acroporidae pada substrat alami, Omni Akuatika, 10 (12):33 – 42 (2011) http://omniakuatika.net/index.php/component/jdownloads/viewdownload/21/81?Itemid=101 [Google Scholar]
- O. Johan, The Survival of Transplanted Coral on Pyramid-shape Fish Shelter on the Coastal Water of Kelapa and Harapan Islands, Kepulauan Seribu Jakarta, Indonesian Aquaculture Journal, 7 (1): pp79 – 85 (2012). http://dx.doi.org/10.15578/iaj.7.1.2012.79-85 [CrossRef] [Google Scholar]
- M. F. A. Khodzori, S. Saad, N. F. H. Nordin, M. F. Salleh, M. H. Rani, M. H. Yusof, N. M. Noor, Diversity and Distribution of Euphyllidae Corals in Tioman Island: Emphasis on the Genetic Variation of Euphyllia cristata, Jurnal Teknologi (Sciences & Engineering), 77 (24):7–22 (2015). https://doi.org/10.11113/jt.v77.6694 [Google Scholar]
- N.P. Zamani, B. Subhan, H. Madduppa, R. Bachtiar, M. Destianto, T. Maulina, Pengaruh Biorock terhadap Keragaman dan Kelimpahan Ikan K arang di Tanjung Lesung, Banten, Prosiding Simposium Nasional Terumbu Karang II, Program Rehabilitasi dan Pengelolaan Terumbu Karang CORMAP II, Direktorat Jenderal Kelautan dan Pulau-pulau Kecil Departemen Kelautan dan Perikanan. 158 – 163 (2008). http://repository.ipb.ac.id/handle/123456789/58447 [Google Scholar]
- M. Mujiyanto, M. G. Garcia, J. Haryadi, R. Rahayu, R. A. Budikusuma, Health Status of Coral Reef in Tunda Island, Banten Province, Indonesia, Indonesian Journal of Marine Sciences/Ilmu Kelautan, 25(2) (2020). https://doi.org/10.14710/ik.ijms.25.2.66-74 [Google Scholar]
- N. Fadli, Survival Rate of Coral Fragments Acropora formosa Transplanted on Artificial Reef Made from Rubble, Berita Biologi, 9 (3):265 – 273 (2008). https://doi.org/10.14203/beritabiologi.v9i3.782 [Google Scholar]
- A. Tahir, J. Jompa, A. Faisal, S. Yusuf, S. Werorilangi, A. Arniati, Successfullnes of Coral Reef Rehabilitation by Bleaching Events In 2016 With Transplantation Technique, Jurnal Ilmu Kelautan, SPERMONDE, 3(1) (2017). https://doi.org/10.20956/jiks.v3i1.2127 [Google Scholar]
- K. Nedimyer, K. Gaines, S. Roach, Coral Tree Nursery: An innovative Approach to Growing Corals in an Ocean-Based Field Nursery, Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society, AACL Bioflux, 4, Issue 4 (2011). http://www.bioflux.com.ro/docs/2011.4.442-446.pdf [Google Scholar]
- T.A. Prameliasari, Munasik, D.P. Wijayanti, Pengaruh perbedaan ukuran fragmen dan metode Transplantasi terhadap pertumbuhan karang pocillopora damicornis di teluk awur, Jepara, Journal of marine research, 1 (1):159 – 168 (2012). https://doi.org/10.14710/jmr.v1i1.2005 [Google Scholar]
- B.H. Yunus, D.P. Wijayanti, A. Sabdono, Transplantasi karang acropora aspera dengan metode tali di perairan teluk Awur Jepara. Bulen Oseanografi Marin. Juli 2013, 2(3):22-28 (2013). https://doi.org/10.14710/buloma.v2i3.6947 [Google Scholar]
- H. Boyce, Micro - Fragmenting as a Method of Reef Rest oration Using Monta Capricornis, Massachusetts Academy of Math and Science (2015). https://www.nhss.org/media/29810/boyce.pdf [Google Scholar]
- E. Rosenberg, O. Koren, L. Reshef, R. Efrony, I. Zilber-Rosenberg, The Role of Microorganisms in Coral Health, Disease and Evolution, Nat Rev Micro, 5: 355-362 (2007). https://doi.org/10.1038/nrmicro1635 [Google Scholar]
- Z. H. Forsman, C. A. Page, R. J. Toonen, D. E. Vaughan, Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral, cover PeerJ. 3, p. e1313 (2015). https://doi.org/10.7717/peerj.1313 [CrossRef] [Google Scholar]
- D. Georgiev, B. Bogdanov, K. Angelova, I. Markovska, Hristov, Synthetic Zeolites - Structure, Classification, Current Trends in Zeolite Synthesis, International Science conference 4th - 5 th, BULGARIA, “Economics and Society development on the Base of Knowledge” (2009) https://www.researchgate.net/publication/322211658_SYNTHETIC_ZEOLITES_-_STRUCTURE_CLASIFICATION_CURRENT_TRENDS_IN_ZEOLITE_SYNTHESIS_REVIEW [Google Scholar]
- M. Król, Natural vs. Synthetic Zeolites, Crystals 2020, 10, 622 (2020). https://doi.org/10.3390/cryst10070622 [Google Scholar]
- M. Munthali, P. Kabwadza-Corner, E. Johan, N. Matsue, Decrease in Cation Exchange Capacity of Zeolites at Neutral pH: Examples and Proposals of a Determination Method, Journal of Materials Science and Chemical Engineering, 2: 1-5 (2014). https://doi.org/10.4236/msce.2014.28001 [Google Scholar]
- B. de Gennaro, P. Aprea, B. Liguori, B. Galzerano, A. Peluso, D. Caputo, Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water, Appl. Sci., 10: 6939 (2020). https://doi.org/10.3390/app10196939 [Google Scholar]
- R. Petrus, J. Warchol, Ion exchange equilibria between clinoptilolite and aqueous solutions of Na + /Cu 2+, Na + /Cd 2+ and Na + /Pb 2+, Microporous and Mesoporous Materials, 61: 137 – 146 (2003). https://doi.org/10.1016/S1387-1811(03)00361-5 [CrossRef] [Google Scholar]
- M. M. Abdel-Rahim, Sustainable use of natural zeolite in aquaculture: a short review, Oceanogr Fish, 2 (4):555–593 (2017). https://doi.org/10.19080/OFOAJ.2017.02.555593 [Google Scholar]
- M. Guisnet, F.R. Ribeiro, Deactivation and regeneration of zeolite catalysts, World Scientif i c, Catalytic Science Series, Imperial College Press, London, England, 9: 360 (2011). https://doi.org/10.1142/p747 [Google Scholar]
- H.A. Aly, M. M. Abdel-Rahim, A.M. Lotfy, B.S. Abdelaty, G. R. Sallam, The Applicability of Activated Carbon, Natural Zeolites, and Probiotics and Its Effects on Ammonia Removal Efficiency and Fry Performance of European Seabass Dicentrarchus labrax, J Aquac Res Development, 7: 459 (2016). https://doi.org/10.4172/2155-9546.1000459 [Google Scholar]
- A. Demir, A. Gunay, E. Debik, Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite, Water Sa. 28 (3):329 – 336 (2002). https://doi.org/10.4314/wsa.v28i3.4903 [CrossRef] [Google Scholar]
- M. Öz, D. Sahin, O. Aral, The Effect of Natural Zeolite Clinoptilolite on Aquarium Water Conditions, Hacettepe J Biol Chem. 44 (2):205 – 208 (2016). https://doi.org/10.15671/HJBC.20164418130 [Google Scholar]
- B. James, G.F. Yazdi, M.R.E. Dovom, M.S. Balssini, M. Yavarmanesh, Inclusion of Dietary Zeolite Reduces Aflatoxin B. 10: 107 (2014). https://doi.org/10.2174/1573401310666140306225620 [Google Scholar]
- G. B. Gholikandi, M. M. Baneshi, E. Dehghanifard, A. R. Yari, Natural Zeolites Applications as Sustainable Adsorbent for Heavy Metals Removal from Drinking Water, Iranian Journal of Toxicology, 3 (3):302 – 310 (2012). http://ijt.arakmu.ac.ir/article-1-53-en.html [Google Scholar]
- R. Gopalan, D. Venkappayya, S. Nagarajan, Textbook of Engineering Chemistry, In: Gopalan R., Venkappayya, D., Nagarajan, S. (Eds.), Vikas Publishing House (4 th edn). pp, 608 (2017) [Google Scholar]
- M. Nieves, D. Voltolina, A. Medina, P. Piña, J.L. Ruiz, Zeolites and diatom growth, Aquac Res. 33: 75 – 79 (2002). https://doi.org/10.1046/j.1355-557X.2001.00646.x [CrossRef] [Google Scholar]
- N. Jiang, R. Shang, S. G. J. Heijman, L. C. Rietveld, High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review, Water Research, 144: 145-161 (2018). https://doi.org/10.1016/j.watres.2018.07.017 [Google Scholar]
- Y.H. Chien, Water quality requirements and management for marine shrimp culture. Proceedings of the special session on shrimp farming. Aquaculture’92 (ed. by J. Wyban), World Aquaculture Society, Baton Rouge, LA, pp 144–146 (1992) [Google Scholar]
- A. Takahashi, K. Mizusawa, M. Amano, Multifunctional Roles of Melanocyte-Stimulating Hormone and Melanin-Concentrating Hormone in Fish: Evolution from Classical Body Color Change, Aqua - Bio Science Monographs, 7 (1):1 – 46 (2014). https://doi.org/10.5047/absm.2014.00701.0001 [CrossRef] [Google Scholar]
- T. O. Mahlangu, L. Mpenyana-Monyatsi, M. N. B. Momba, B. B. Mamba, A Simplified cost-effective biosand filter (BSFZ) for removal of chemical contaminants, Water Jornal of Chemical En gineering and Materials Science, 2 (10):156 – 157 (2011). https://doi.org/10.5897/JCEMS11.041 [Google Scholar]
- M. F. C. Leal, M. T. S. D. Vasconcelos, C. M. G. Van den Berg, Copper induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures, Limnol Oceanogr, 44: 1750 – 1762 (1999). https://doi.org/10.4319/lo.1999.44.7.1750 [CrossRef] [Google Scholar]
- M. T. S. D. Vasconcelos, J. L. López-Ruiz, A. Garcia, M. F. C. Leal, A. Fachini, Effect of zeolites on cultures of the marine microalgae, Emiliania huxleyi. Aquacult Eng, 31: 205 – 219 (2004). https://doi.org/10.1016/j.aquaeng.2004.04.001 [CrossRef] [Google Scholar]
- N. Widiastuti, H. Wu, H. Ang, D. Zhang, Removal of ammonium from greywater using natural zeolite, Desalination. 277: 15-23 (2011). https://doi.org/10.1016/j.desal.2011.03.030 [Google Scholar]
- A. Fachini, M. T. S. D. Vasconcelos, Effects of zeolites on cultures of marine micro-algae - a brief review, Environ. Sci. Pollut, Control Ser, 13 (6): 414e417 (2006). https://doi.org/10.1065/espr2006.01.293 [Google Scholar]
- S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chemical Engineering Journal. 156: 11 – 24 (2010). https://doi.org/10.1016/j.cej.2009.10.029 [CrossRef] [Google Scholar]
- Suhartana, E. Sukmasari, C. Azmiyawati, Modification of Natural Zeolite with Fe({III}) and Its Application as Adsorbent Chloride and Carbonate ions, IOP, IOP Conference Series: Materials Science and Engineering, 349: 012075 (2018). DOI: https://doi.org/10.1088/1757-899x/349/1/012075 [Google Scholar]
- J. Huheey, E. Keiter, R. Keiter, O. Medhi, Inorganic Chemistry, New Delhi: Pearson Education (2011) [Google Scholar]
- R. W. Buddemeier, J. A. Kleypas, R. B. Aronson, Coral reefs and global climate change: Potential contributions of climate change to stresses on coral reef ecosystems. Pew Centre for Global Climate Change: Arlington (USA). 33 pp (2004) https://www.researchgate.net/publication/285976656_Coral_reefs_and_global_climate_change_Potential_contributions_of_climate_change_to_stresses_on_coral_reef_ecosystems [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.