Open Access
Issue
E3S Web Conf.
Volume 375, 2023
8th International Conference on Energy Science and Applied Technology (ESAT 2023)
Article Number 01011
Number of page(s) 7
Section Fossil Energy & Geological Engineering
DOI https://doi.org/10.1051/e3sconf/202337501011
Published online 27 March 2023
  1. Adachi, J., Siebrits, E., Peirce, A. and Desroches, J., 2007. Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences, 44(5): 739-757. [CrossRef] [Google Scholar]
  2. Bunger, A.P. and Cardella, D.J., 2015. Spatial distribution of production in a Marcellus Shale well: Evidence for hydraulic fracture stress interaction. Journal of Petroleum Science and Engineering, 133: 162-166. [CrossRef] [Google Scholar]
  3. Carrier, B. and Granet, S., 2012. Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Engineering Fracture Mechanics, 79: 312-328. [CrossRef] [Google Scholar]
  4. Choo, L.Q., Zhao, Z., Chen, H. and Tian, Q., 2016. Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method. Computers and Geotechnics, 76: 12-22. [CrossRef] [Google Scholar]
  5. Damjanac, B. and Cundall, P., 2016. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Computers and Geotechnics, 71: 283-294. [CrossRef] [Google Scholar]
  6. Detournay, E., 2004. Propagation regimes of fluid- driven fractures in impermeable rocks. International Journal of Geomechanics, 4(1): 35-45. [CrossRef] [Google Scholar]
  7. Detournay, E., 2016. Mechanics of Hydraulic Fractures. Annual Review of Fluid Mechanics, 48: 311-339. [CrossRef] [Google Scholar]
  8. Detournay, E. and Cheng, A.H.-D., 1993. Fundamentals of poroelasticity, Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, II, pp. 113-171. [Google Scholar]
  9. Gordeliy, E. and Detournay, E., 2011. Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space. International Journal of Solids and Structures, 48(19): 2614-2629. [CrossRef] [Google Scholar]
  10. Guo, J., Lu, Q., Zhu, H., Wang, Y. and Ma, L., 2015. Perforating cluster space optimization method of horizontal well multi-stage fracturing in extremely thick unconventional gas reservoir. Journal of Natural Gas Science and Engineering, 26: 1648-1662. [CrossRef] [Google Scholar]
  11. Han, Y., Hampton, J., Li, G., Warpinski, N.R. and Mayerhofer, M.J., 2015. Investigation of Hydromechanical Mechanisms in Microseismicity Generation in Natural Fractures Induced by Hydraulic Fracturing. SPE Journal. [Google Scholar]
  12. Hibbitt, H., Karlsson, B. and Sorensen, P., 2016. Abaqus Analysis User’s Manual Version 2016, Dassault Systèmes Simulia Corp, Providence. [Google Scholar]
  13. Li, Y. et al., 2017a. Numerical simulation of limited- entry multi-cluster fracturing in horizontal well. Journal of Petroleum Science and Engineering, 152: 443-455. [CrossRef] [Google Scholar]
  14. Li, Y., Deng, J.G., Liu, W. and Feng, Y., 2017b. Modeling hydraulic fracture propagation using cohesive zone model equipped with frictional contact capability. Computers and Geotechnics, 91: 58-70. [CrossRef] [Google Scholar]
  15. Lisjak, A. et al., 2017. A 2D, fully-coupled, hydro- mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Computers and Geotechnics, 81: 1-18. [CrossRef] [Google Scholar]
  16. Long, G. and Xu, G., 2017. The Effects of Perforation Erosion on Practical Hydraulic-Fracturing Applications. SPE Journal, 22(02): 645-659. [CrossRef] [Google Scholar]
  17. Mohammadnejad, T. and Khoei, A.R., 2013. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design, 73: 77-95. [CrossRef] [Google Scholar]
  18. Nordgren, R., 1972. Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal, 12(04): 306-314. [CrossRef] [Google Scholar]
  19. Perkins, T. and Kern, L., 1961. Widths of hydraulic fractures. Journal of Petroleum Technology, 13(09): 937-949. [CrossRef] [Google Scholar]
  20. Salimzadeh, S. and Khalili, N., 2015. Fully coupled XFEM model for flow and deformation in fractured porous media with explicit fracture flow. International Journal of Geomechanics, 16(4):04015091. [Google Scholar]
  21. Wang, H.F., 2004. Theory of linear poroelasticity with applications to geomechanics and hydrogeology. [Google Scholar]
  22. Yan, C., Zheng, H., Sun, G. and Ge, X., 2015. Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing. Rock Mechanics and Rock Engineering, 49(4): 1-22. [Google Scholar]
  23. Zhang, X. and Jeffrey, R.G., 2008. Reinitiation or termination of fluid-driven fractures at frictional bedding interfaces. Journal of Geophysical Research: Solid Earth, 113(B8). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.