Open Access
E3S Web Conf.
Volume 377, 2023
3rd International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2022)
Article Number 02005
Number of page(s) 8
Section Civil Engineering
Published online 03 April 2023
  1. R. Gonzalez, Digital image processing, Woods, Technosphere (2005) [Google Scholar]
  2. S.V. Kuleshov, Yu.A. Aksenov, A.A. Zaitseva, Innovative Science 5, 82–86 (2015) [Google Scholar]
  3. I.I. Jumanov, R.A. Safarov, L.Ya. Xurramov, Optimization of micro-object identification based on detection and correction of distorted image points, AIP Conference Proceedings 2402, 070041 (2021) [CrossRef] [Google Scholar]
  4. I.I. Jumanov, O.I. Djumanov, R.A. Safarov, Recognition of micro-objects with adaptive models of image processing in a parallel computing environment, Journal of Physics: Conference Series 1791(1), 012099 (2021) [CrossRef] [Google Scholar]
  5. V.G. Ivanova, A.I. Tyajev, Cipher signal processing and signal processors, PGUTI, Samara (2017) [Google Scholar]
  6. N.A. Borisenko, S.B. Orexov, Application of wavelet - transformations for the analysis of ECG and RVG signals, Injenernaya Fizika 5, 9–12 (2002) [Google Scholar]
  7. A. Boucher, P. Hidalgo, M. Thonnat, J. Belmonte, C. Galan 2nd European Symposium on Aerobiology, Vienna (Austria) (2000) [Google Scholar]
  8. A.K. Tsytsulin, Sh.S. Fahmi, E.I. Kolesnilov, S.V. Ochkur, Functional interchange of transmission rate and complexity of the coder continuous signal, Information Technology 4, 71–77 (2011) [Google Scholar]
  9. J. Turan, L. Ovsenik, A. Kolesarova, 2010 Video surveillance systems, Acta Electrotechnica et Informatica 10, 46–53 (2010) [Google Scholar]
  10. Z. Xu, U. Bagci, A. Mansoor, et al. 2015 Medical Physics 42, 3896–3910 (2015) [Google Scholar]
  11. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons, New York (2001) [Google Scholar]
  12. A.S. Durai, A.E. Saro, M. Phil, GVIP Journal 6, 122–128 (2006) [Google Scholar]
  13. Yu.Ye. Voskoboynikov, Wavelet filtering of signals and images, NGASU, Novosibirsk (2015) [Google Scholar]
  14. I.I. Jumanov, O.I. Djumanov, R.A. Safarov, Recognition and classification of pollen grains based on the use of statistical, dynamic image characteristics, and unique properties of neural networks, 11th World Conf. “Intelligent System for Industrial Automation 1323, 170–179 (2020) [Google Scholar]
  15. J.I. Ibragimovich, D.O. Isroilovich, S.R. Abdullayevich, Optimization of identification of micro - objects based on the use of characteristics of images and properties of models, Int. Conf. on Information Science and Com. Tech. 93, 51483 (2020) [Google Scholar]
  16. H.A. Borisenko, A.D. Fertman, Automated analysis of experimental data using wavelet-transformation, Pribori i Texnika Eksperimenta 2, 28–34 (2003) [Google Scholar]
  17. D.V. Shashev, Information - measuring equipment and technologies, 544–550 (2016) [Google Scholar]
  18. C.M. Costa, S. Yang, Counting pollen grains using readily available, free image processing and analysis software, Annals of Botany 104, 1005–1010 (2009) [CrossRef] [PubMed] [Google Scholar]
  19. G.Y. Larina et al., Automated identification of images of pils grains with similar textural features modern trends in the development of science and technology, 2nd International Scientific and Practical Conference, Belgorod (2015) [Google Scholar]
  20. K. Blatter, Wavelet analysis, Fundamentals of Theory, Technosfera, Moscow (2004) [Google Scholar]
  21. D.D. Kosheleva, A.V. Doronina, Fourier Transform and Fast Fourier Transform, Innovasii. Nauka. Obrazovaniye 38, 626–632 (2021) [Google Scholar]
  22. B.M. Kruglikov, New Directions in Pattern Recognition and Time Series of Discrete Data, Internauka 185, 16–23 (2021) [Google Scholar]
  23. D. Forsayt, D. Pons, Computer vision. Modern approach, Vilyams (2004) [Google Scholar]
  24. R. Baldock, J. Graham, Image processing and analysis. A practical approach, Oxford University Press, New York (2000) [Google Scholar]
  25. Ya. Furman, Introduction to contour analysis and its applications to image and signal processing, Fizmatlit, Moscow (2002) [Google Scholar]
  26. S. Mallat, A wavelet tour of signal processing, Academic Press (1999) [Google Scholar]
  27. A.A. Jarkix, V.A. Kvashenko, Comparison of the representation accuracy of Gaussian wavelets of different orders, Bulletin of the Murmansk State Technical University 24, 218–223 (2009) [Google Scholar]
  28. I.I. Jumanov, S.M. Xolmonov, Optimization of identification of non-stationary objects due to information properties and features of models, IOP Conf. Series: Materials Science and Engineering 1047(1), 012064 (2021) [CrossRef] [Google Scholar]
  29. V.I. Volovach, M.V. Shakurskiy, A Method for Increasing the Speed of Cipher Filters Based on the Moving Discrete Fourier Transform, Elektrotexnicheskiye i informasionniye kompleksi i sistemi 3, 20–22 (2010) [Google Scholar]
  30. S.V. Shvidchenko, D.A. Bezuglov, Synthesis of algorithms for discrete wavelet analysis of image fragments under a priori uncertainty on a random background, Uspexi sovremennoy radioelektroniki 5, 031–038 (2013) [Google Scholar]
  31. G.M. Popova, V.N. Stepanov, Automation and telemechanics 1, 131–142 (2016) [Google Scholar]
  32. B. Verma, M. Blumenstein, S. Kulkarni, Journal of Intelligent Systems 9, 39–54 (1999) [CrossRef] [Google Scholar]
  33. A.V. Chernov, Fast Method for Local Image Processing and Analysis 9, 572–577 (1999) [Google Scholar]
  34. M.M. Almahrouq, A.I. Bobrovsky et al., Precision, speed and complexity of devices for image coding by control points, Inf. Tech., Mechanics and Optics 16, 678–688 (2016) [Google Scholar]
  35. Yu.V. Vizilter, Image processing and analysis in machine vision tasks, Fizmatkniga, Moscow (2010) [Google Scholar]
  36. O.I. Djumanov, S.M. Kholmonov, Optimization of learning the neuronetworking data processing system for non-satinary objects recognition and forecasting, 4th International Conference on Application of Information and Communication Technologies 2010, 5612037 (2010) [Google Scholar]
  37. V.A. Golovko, Neural networks: training, organization and application, IPRZhR, Moscow (2001) [Google Scholar]
  38. D. Liu, S. Wang et al., Computers in Biology and Medicine 72, 185–200 (2016) [CrossRef] [PubMed] [Google Scholar]
  39. D.O. Isroilovich, X.S. Maxmudovich, Effective recognition of pollen grains based on parametric adaptation of the image identification model, International Conference on Information Science and Communications Technologies 2020, 9351486 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.