Open Access
E3S Web Conf.
Volume 378, 2023
The First International Interdisciplinary Scientific and Practical Conference Man in the Arctic (IIRPCMIA 2021)
Article Number 04001
Number of page(s) 5
Section Mining in the Arctic
Published online 07 April 2023
  1. I.D. Reznik, G.P. Ermakov, Ya M. Shneyerson Nikel (Moscow, OOO “Nauka i tekhnologiya”, 2001) [Google Scholar]
  2. V.F. Borbat, I.Yu Leshch, New processes in nickel and cobalt metallurgy Novyye protsessy v metallurgii nikelya i kobalta (Moscow, Metallurgiya, 1976) [Google Scholar]
  3. S.K. Dutta, D.R. Lodhari, Nickel, In: Extraction of Nuclear and Non-ferrous Metals. Topics in Mining. Metallurgy and Materials Engineering (Singapore, Springer, 2018) [CrossRef] [Google Scholar]
  4. K.A. Alibhai, A.W. Dudeney, D.J. Leak, FEMS – Microbiol, Rev., 11, (1993) [Google Scholar]
  5. L.B. Sukla, V.V Panchanadikar. R.N. Kar. World, J. of Microbiol. and Biotech., 2 (1993) [Google Scholar]
  6. A.B. Zhivayeva, T.V. Bashlykova, et al., Tsvet. met., 3 (2007) [Google Scholar]
  7. M. Seggiania, S. Vitoloa, S. D’Antoneb, Hydrometallurgy, 81.1 (2006) [Google Scholar]
  8. S. Mohapatra, Ch. Sengupta, Nayak B. D., et al., Korean J. of Chem. Eng., 25 (2008) [Google Scholar]
  9. Sh. Zhou, et al., Wang. Metallurg. and Mat. Trans. B., 47 (2016) [Google Scholar]
  10. K.D. Kim, W.W. Huh, D.J. Min, Metallurg. and Mat. Trans. B., 45 (2014) [Google Scholar]
  11. Q. Zhao, J. Xue, W. Chen, Trans. of the Indian Inst. of Met., 72 (2019) [Google Scholar]
  12. O. Kadnikova, M. Toretayev, G. Altynbayeva, et. al., J. Chem. Technol. Metall., 55(3) (2020) [Google Scholar]
  13. V.A. Masloboev, et al., J. of Min. Sci., 50 (2014) [Google Scholar]
  14. O. Kolesnikova, et al., Materials, 15(6980) (2022) [PubMed] [Google Scholar]
  15. B. Ye Zhakipbaev, et al., Rasayan J. of Chem, 14(2) (2021) [Google Scholar]
  16. T.M. Khudyakova et al., Refract. Ind. Ceram., 60(1) (2019) [Google Scholar]
  17. V. P. Bondarenko, K. S. Nadirov, V. G. Golubev, Neftyanoe Khozyaystvo Oil Industry, 1 (2017). [Google Scholar]
  18. B.K. Kenzhaliyev et al., Int. J. of Mechan. and Product. Eng. Res. and Develop, 9(6) (2019) [Google Scholar]
  19. O.S. Baigenzhenov, et al., Min. Proces. and Extract. Metal. Rev., 4 (2015) [Google Scholar]
  20. E.V. Siziakova, P.V. Ivanov, A.V. Boikov, Application of calcium hydrocarboaluminate for the production of coarse-graded alumina, Journal of Chemical Technology and Metallurgy, issue 1. vol. 54, pp. 200-203 (2019) [Google Scholar]
  21. C. Yang, et al, Hydrometallurgy, 106 (2011) [Google Scholar]
  22. N. Koteleva, et al., Digitalization in open-pit mining: A new approach in monitoring and control of rock fragmentation, Applied Sciences (Switzerland), 21100829268(11) doi: 10.3390/app112210848 (2021) [Google Scholar]
  23. I.E. Volokitina, et al., Materials, 15(7) (2022) [Google Scholar]
  24. A. Nedosekin, et al., Strategic Approach to Assessing Economic Sustainability Objects of Mineral Resources Sector of Russia, Journal of Mining Institute, 237, pp. 354–360. doi:10.31897/pmi.2019.3.354. (2019) [CrossRef] [Google Scholar]
  25. N.V. Vasilyeva, et al., Materials, 15(3975) (2022) [Google Scholar]
  26. I.I. Beloglazov, et al., The Concept of Digital Twins for Tech Operator Training Simulator Design for Mining and Processing Industry, Eurasian Mining, pp. 50–54, doi:10.17580/em.2020.02.12. (2020) [CrossRef] [Google Scholar]
  27. A.A. Kul’chitskii, D.A. Kashin, The choice of a method for non-contact assessment of the composition of briquetted charge materials, Journal of Physics: Conference Series, 17426588(1399), doi: 10.1088/1742-6596/1399/4/044108 (2019) [Google Scholar]
  28. M.K. Zhantasov, et al., Chem. tod., 34(1) (2016) [Google Scholar]
  29. I.V. Sergeeva, et al., St. in Transl., 47(3) (2017) [Google Scholar]
  30. E.K. Rodnichenko, et al., Augmented Reality Techniques in Industrial Warehouse Logistics in Mining Industry, IOP Conference Series: Earth and Environmental Science, 688, pp. 1 7 (2021) [Google Scholar]
  31. E. R. Fedorova, Mathematical model of red sludge sedimentation in single-level circular thickener, Journal of Physics: Conference Series, issue 3, vol. 1333, doi: 10.1088/1742-6596/1333/3/032018 (2019) [Google Scholar]
  32. A.A. Kulchitskii, et al., Evaluating the Error of a System for Monitoring the Geometry of Anode Posts in Electrolytic Cells with Self-Baking Anode / Russian, Journal of Nondestructive Testing, 56(3), рр. 268-274 (2020) [CrossRef] [Google Scholar]
  33. N. Vasilyeva, E. Fedorova. et al., Big Data as a Tool for Building a Predictive Model of Mill Roll Wear, Symmetry, 13(5) (2021) [Google Scholar]
  34. E. Siziakova, et al., Materials, 15(4930) (2022) [Google Scholar]
  35. D.D. Guerra, et al., Alternative measures to reduce carbon dioxide emissions in the republic of Cuba, Journal of Ecological Engineering, 21(4), pp. 55– 60 (2020) [CrossRef] [Google Scholar]
  36. N.V. Vasilyeva, P.V. Ivanov, Development of a control subsystem to stabilize burden materials charging into a furnace, Journal of Physics: Conference Series, 1210(1), 012158 (2019) [CrossRef] [Google Scholar]
  37. R. Klyuev, et al., Energy Indicators of Drilling Machines and Excavators in Mountain Territories. In: Murgul V.. Pukhkal V. (eds), International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. Advances in Intelligent Systems and Computing, Springer, 1258 (2021) [Google Scholar]
  38. Yuri L. Zhukovsky, et al., (2020) Potential for electric consumption management in the conditions of an isolated energy system in a remote population, Sustainable Development of Mountain Territories, issue 4. vol. 12, pp. 583-591. [CrossRef] [Google Scholar]
  39. B.T. Taimasov, B.K. Sarsenbayev, Euras. Chem.Technolog. J, 19(4) (2017) [Google Scholar]
  40. N. Zhangabay, et al., Materials, 15(4996) (2022) [PubMed] [Google Scholar]
  41. A.V. Nitsenko, et al., Inorganic Materials, 54(7) (2018) [Google Scholar]
  42. G.S. Kenzhibaeva, et al., Refract. Ind. Ceram., 61(3) (2020) [Google Scholar]
  43. I. Romanova, IOP Conference Series: Materials Science and Engineering, 032016 (2018) [Google Scholar]
  44. G.V. Sinyarev, et al., Primeneniye EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov. [The use of computers for thermodynamic calculations of metallurgical processes] (Moskow, Nauka, 1962). [Google Scholar]
  45. B.E. Serikbaev, et al., Refr. and Ind. Ceram., 62(4) (2021) [Google Scholar]
  46. B.O. Sapargaliyeva, Rаs. J. of Chem., 15(3) (2022) [Google Scholar]
  47. I.K. Andrianov, A.V. Stankevich, International Science and Technology Conference “East Conf 2019”, 8725322I (2019) [Google Scholar]
  48. I.V. Sergeeva., et al., Izv. Ferr. Metall., 60(9) (2017) [Google Scholar]
  49. Aigul Mаmyrbekova, Rus. J. of Phуs. Chem. А., 92(3) (2018) [Google Scholar]
  50. A.E. Filin, et al., Ugol, 9 (2022) [Google Scholar]
  51. A. Roine, Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium loftware with Extensive Thermochemical Database (Pori, Outokumpu Research OY, 2002) [Google Scholar]
  52. I.K. Andrianov, S.V. Belykh, International Science and Technology Conference “East Conf 2019”, 8725410 (2019) [Google Scholar]
  53. A.B. Agabekova, et al., Rаs. J. of Chem, 15(3), (2022) [Google Scholar]
  54. A. P. Vlasyuk, et al., Math. Model. and Comput., 1 (2020) [Google Scholar]
  55. A. Donayev, et al., News of the Nation. Acad. of Sci. of the Repub. of Kazakhstan. Series of Geol. and Tech. Sci., 4 (2022) [Google Scholar]
  56. V.G. Golubev, et al., Rаs. J. of Chem, 15(3) (2022) [Google Scholar]
  57. S. Syrlybekkyzy, et al., Ecol. and Indus. of Russ., 27(1) (2023) [Google Scholar]
  58. A. Naizabekov, et al., J. of Chem. Tech. and Metallur., 57(4) (2022) [Google Scholar]
  59. S. Auyesbek, et al., J. Compos. Sci., 7, 124 (2023) [CrossRef] [Google Scholar]
  60. Y. Amanbek, et al., Energies, 15 (7), 2404 (2022) [CrossRef] [Google Scholar]
  61. Z.N. Moldamuratov, et al., Nanotechnol. in Construc., 14(3) (2022) [Google Scholar]
  62. Z. Aubakirova, et al., Technobius, 2(3), 0024 (2022) [CrossRef] [Google Scholar]
  63. V. Zhukovskyy, et al., CEUR Worksh. Proceed., 3309 (2022) [Google Scholar]
  64. I. Volokitina, J. Chem. Technol. Metall. 55 (2020) [Google Scholar]
  65. S.V. Balovtsev, et al., Min. Inform. and Analyt. Bull., 2-1 (2021) [Google Scholar]
  66. I. Volokitina. Met. Sci. Heat Treat. 61, 2 (2019) [Google Scholar]
  67. S. Lezhnev, A. Naizabekov, E. Panin, et. al., Proced. Eng., 81 (2014) [Google Scholar]
  68. Ye. Utepov, Computers and Concrete. 25, (2020) [Google Scholar]
  69. L.V. Sokolovskaya, S.A. Kvyatkovskiy, S.M. Kozhakhmetov, A.S. Semenova, R.S. Seisembayev, Metallurgist, 65(5-6) (2021) [Google Scholar]
  70. R. Fediuk, M. Amran, A. Klyuev, et. al., Materials. 15(7), 2542 (2022) [Google Scholar]
  71. E.A. Sit’ko, B.M. Sukurov, B.A. Omіrzakov, et. al., Metallurgist, 63(9-10) (2020) [Google Scholar]
  72. A. Volokitin, A. Naizabekov, et. al., J. of Chem. Technol. and Metall., 57(4) (2022) [Google Scholar]
  73. A.D. Akbassova, G.A. Sainova, I.O. Aimbetova, D.K. Sunakbaeva, M.M. Akeshova. Fresen. Environ. Bull., 25(9) (2016) [Google Scholar]
  74. T. I. Ovchinnikova, O. M. Zinovieva, A. M. Merkulova, et. al., Gornyi Zhurnal, 3 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.