Open Access
Issue |
E3S Web of Conf.
Volume 381, 2023
International Scientific and Practical Conference “Development and Modern Problems of Aquaculture” (AQUACULTURE 2022)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 10 | |
Section | Agriculture, River Ecosystems and Environment | |
DOI | https://doi.org/10.1051/e3sconf/202338101024 | |
Published online | 14 April 2023 |
- J. Pang, The 7th IEEE Annual Computing and Communication Workshop and Conference (CCWC) (2017) https://doi.org/10.1109/CCWC.2017.7868454 [Google Scholar]
- I.-C. Yoo, H. Lim, D. Yook, IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 23(12), 2238–2245 (2015) https://doi.org/10.1109/TASLP.2015.2476762 [CrossRef] [Google Scholar]
- X. Zhang, J. Wu, International Conference on Acoustics, Speech and Signal Processing, 853–857 (2013) https://doi.org/10.1109/ICASSP.2013.6637769 [Google Scholar]
- Q. Wang, J. Du, X. Bao et al, 16th Annual Conference of the International Speech Communication Association, 2282–2286 (2015) [Google Scholar]
- K. Kinoshita, T. Ochiai, M. Delcroix, T. Nakatani, Improving Noise Robust Automatic Speech Recognition With Single-Channel Time-Domain Enhancement Network (NTT Corporation, Kyoto, 2020) https://arxiv.org/pdf/2003.03998.pdf [Google Scholar]
- A. Buades, B. Coll, J.M. Morel, International journal of computer vision 76(2), 123–139 (2008) [CrossRef] [Google Scholar]
- V. Katkovnik, A. Foi, K. Egiazarian, K. Dabov, International journal of computer vision 86(8), 1-32 (2010) [CrossRef] [Google Scholar]
- X. Haitian, T. Zheng-Hua, P. Dalsgaard, B. Lindberg, IEEE signal processing letters 15, 701-704 (2008) [CrossRef] [Google Scholar]
- A. Szlam, Recent UCLA computational and applied mathematics reports (2008) [Google Scholar]
- C.K.A. Reddy, V. Gopal, R. Cutler, E. Beyrami et al, The INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets, Subjective Testing Framework, and Challenge Results (Microsoft Corporation, Redmond, WA, USA, 2020) https://arxiv.org/ftp/arxiv/papers/2005/2005.13981.pdf [Google Scholar]
- Y. Hu, Y. Liu, S. Lv, M. Xing et al, DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement (Northwestern Polytechnical University, Xi'an, 2008) https://arxiv.org/pdf/2008.00264v4.pdf [Google Scholar]
- Y. Luo, N. Mesgarani, TasNet: Time-Domain Audio Separation Network for Real-Time, Single-Channel Speech Separation Department of Electrical Engineering (Columbia University, New York, 2018) https://arxiv.org/pdf/1711.00541.pdf [Google Scholar]
- A. Oord, S. Dieleman, H. Zen, K. Simonyan et al, WaveNet: A Generative Model for Raw Audio Google DeepMind (London, UK, 2016) https://arxiv.org/pdf/1609.03499.pdf [Google Scholar]
- Y. Luo, N. Mesgarani, Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation (2019) https://arxiv.org/pdf/1809.07454.pdf [Google Scholar]
- A. Defossez, G. Synnaeve, Y. Adi, Real Time Speech Enhancement in the Waveform Domain Facebook AI Research (INRIA, PSL Research University, 2020) https://arxiv.org/pdf/2006.12847.pdf [Google Scholar]
- M.S. Nixon, A.S. Aguado, Feature Extraction and Image Processing (Academic Press, 2008) [Google Scholar]
- Z. Cao, Z. Wei, G. Zhang, A no-reference sharpness metric based on the notion of relative blur for Gaussian blurred image (Beihang University, Beijing, 2014) https://www.sciencedirect.com/science/article/abs/pii/S1047320314001096 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.