Open Access
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
Article Number 01001
Number of page(s) 22
Section Shrink-Swell & Collapse
Published online 24 April 2023
  1. J. White (2018). Collapsible soils, Colorado Geological Survey, [Google Scholar]
  2. S. Ahmad, Foundations over expansive soil, a Saudi Arabia case history, 5th Int’l Conf. on Case Histories in Geotechnical Engineering, Univ. of Missouri-Rolla (2004) [Google Scholar]
  3. J. D. Rogers, J. David, Hydrocompression and hydroswell - new terms in the geotechnical dictionary, J.W. Borchers, ed., Land Subsidence Case Studies and Current Research: Association of Engineering Geologists 8, 119-147 (1998) [Google Scholar]
  4. E. Lawton, R. Fragaszy, J. Hardcastle, Collapse of a compacted clayey sand, J. Geot. Engr., ASCE, 115, 9, 1252-1267 (1989) [CrossRef] [Google Scholar]
  5. T. Brandon, M, Duncan, W. Gardner Hydrocompression settlement of deep fills, JGGE, ASCE, 116, 10 (1990) [Google Scholar]
  6. I. Noorany, I., J. V. Stanley. Settlement of compacted fills caused by wetting, Proc. Vertical and Horizontal Deformations of Foundations and Embankments, ASCE, 2, College Station TX. (1994). [Google Scholar]
  7. J. L. Justo, A. Delgado, J., The influence of stress- path in the collapse-swelling of soils at the laboratory, Proc. Fifth Int’l Conf on Expansive Soils 1984: Inst. of Engineers, Australia, (1984) [Google Scholar]
  8. J.E.B. Jennings, J.B. Burland, Limitations to the use of effective stresses in partly saturated soils. Géotechnique, 12, 2, 125–144 (1962) [CrossRef] [Google Scholar]
  9. P. Delage, J. Graham, Mechanical behaviour of unsaturated soils: understanding the behaviour of unsaturated soils requires reliable conceptual models, Proc. of the First Int’ l Conference on Unsaturated Soils (UNSAT), Paris, 1995. 3 (1996) [Google Scholar]
  10. E.L. Matyas, H.S. Radhakrishna, Volume change characteristics of partially saturated soils, Géotechnique, 18, 4, 432–448 (1968) [CrossRef] [Google Scholar]
  11. D.G. Fredlund, N.R. Morgenstern, Stress state variables for unsaturated soil, J. Geot. Engr. Div., ASCE, 103 (1977) [Google Scholar]
  12. E. E. Alonso, A. Gens, A. Josa, A constitutive model for partially saturated soils, Géotechnique, 40, 3, 405–430 (1990) [CrossRef] [Google Scholar]
  13. A. Gens, E.E. A. Alonso, A framework for the behaviour of unsaturated expansive clays, Canadian Geot. J., 29, 6, 1013–1032 (1992) [CrossRef] [Google Scholar]
  14. E. Alonso, J. Vaunat, A. Gens, Modelling the mechanical behaviour of expansive clays. Engineering Geology, 54(1–2), 173–183 (1999). [CrossRef] [Google Scholar]
  15. D. G. Fredlund, H. Rahardjo, Soil Mechanics for Unsaturated Soils, John Wiley & Sons (1993) [CrossRef] [Google Scholar]
  16. S. Houston, X. Zhang, Review of expansive and collapsible soil volume change models within a unified elastoplastic framework, Soils and Rocks, 44, 3, DOI: 10.28927/SR.2021.064321 (2021) [CrossRef] [Google Scholar]
  17. I. Noorany, I. GE_Seminar.pdf (2018) [Google Scholar]
  18. A. Cerato, G. Miller, G., J. Jajjat, Influence of Clod-Size and Structure on Wetting-Induced Volume Change of Compacted Soil, ASCE. J. Geot. and Geoenv. Engr., 135, 11 (2009) [Google Scholar]
  19. S. Houston, W. Houston, Level surveys and patterns of movement in collapsible and expansive soils studies, J. Performance of Constructed Fac. 31,1, (2017) [Google Scholar]
  20. D. Fredlund, H.Q. Pham, A volume-mass constitutive model for unsaturated soils in terms of two independent stress state variables, Proc. 2nd Int’l Conf. on Unsaturated Soils, 1, ASCE, Carefree, AZ, 105-134 (2006) [CrossRef] [Google Scholar]
  21. W. Lambe, Stress path method, J/ of the Soil Mechanics and Foundations Div., ASCE, 93, 6, 309-331 (1967) [CrossRef] [Google Scholar]
  22. W. Lambe, A. Marr, Stress path: second edition, J. of the Geot. Engr. Div., ASCE, 105, 6 (1979) [Google Scholar]
  23. X. Zhang, R.L. Lytton, Modified state-surface approach to the study of unsaturated soil behavior, Part I: Basic concept, Canadian Geotechnical J., 46,5, 536–552 (2009a) [CrossRef] [Google Scholar]
  24. X. Zhang, R.L. Lytton, Modified state-surface approach to the study of unsaturated soil behavior: Part II: General formulation, Canadian Geot. J., 46, 5, 553–570 (2009b) [CrossRef] [Google Scholar]
  25. X. Zhang, R.L. Lytton, modified state-surface approach to the study of unsaturated soil behavior. Part III: Modeling of coupled hydromechanical effect, Canadian Geot. J., 49,1, 98–120 (2012) [CrossRef] [Google Scholar]
  26. I.J. A. Brackley, Swell under load, Proc. 6th Regional Conference for Africa Soil Mechanics and Foundation Engineering, Durban, South Africa. National Building Research Institute, CSIR, Pretoria, South Africa. 1, 65–70 (1975) [Google Scholar]
  27. S. Wheeler, V. Sivakumar, An elastoplastic critical state framework for unsaturated soil, Géotechnique, 45(1), 35–53, (1995) [CrossRef] [Google Scholar]
  28. X. Zhang, M. Xiao, Using modified state surface approach to select parameter values in the Barcelona basic model, Int. J. Numer. Anal. Meth. Geomech. 37, 1847–1866 (2013) [CrossRef] [Google Scholar]
  29. X. Zhang, R.L. Lytton, Discussion of a new modeling approach for unsaturated soils using independent stress variables, Canadian Geotechnical J., 45, 12, 1784-1787 (2008) [CrossRef] [Google Scholar]
  30. X. Zhang, Analytical solution of the barcelona basic model, Experimental and Applied Modeling of Unsaturated Soils, Shanghai, China, 96–103. (2010) [Google Scholar]
  31. B. Riad, X. Zhang, Using modified state surface approach to study the hydro-mechanical behavior of unsaturated soils, Proc. Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics, 377-386, (2020) [Google Scholar]
  32. B. Riad, X. Zhang, A consistent three-dimensional elastoplastic constative model to study the hydromechanical behavior of unsaturated soils, J. of Transportation Research Record (2021) [Google Scholar]
  33. B. Riad, X. Zhang, Characterizing and modeling the coupled hydro-mechanical cyclic behavior of unsaturated soils using constant water content oedometer and direct shear tests, Transportation Research Record, (2022) [Google Scholar]
  34. A.W. Bishop, The principle of effective stress, Teknisk Ukeblad, 106, 39, 859-863 (1959) [Google Scholar]
  35. A. Bishop, G. Blight, Some aspectes of effective stress in saturated and partly saturated soils, Géotechnique, 13, 3, 177-197 (1963) [CrossRef] [Google Scholar]
  36. M. Nuth, L. Laloui, Effective stress concept in unsaturated soils: Clarification and validation of a unified framework, J. of numerical and analytical methods in geomechanics (2008) [Google Scholar]
  37. D.G. Fredlund, Role of SWCC in unsaturated soil mechanics, Blight Lecture, Proc. 19th International Conf. on Soil Mechanics and Geot. Engr., Seoul, 57 – 80 (2017) [Google Scholar]
  38. N. Khalili, F. Geiser, G. Blight, Effective Stress in Unsaturated Soils: Review with New Evidence, International Journal of Geomechanics 4, 2, ASCE, 1532-3641(2004) [Google Scholar]
  39. S. Wheeler, R. Sharma, M. S. R. Buisson, Coupling of hydraulic hysteresis and stress--strain behaviour in unsaturated soils, Géotechnique, 53, 1, 41–54 (2003) [CrossRef] [Google Scholar]
  40. X. Zhang, J. Liu, P. Li, A new method to determine the shapes of yield curves for unsaturated soils, J. of Geot. and Geoenv. Engr., ASCE, 136,1, 239-247 (2010) [CrossRef] [Google Scholar]
  41. T.M. Thu, H. Rahardjo, E.C. Leong, Soil-water characteristic curve and consolidation behavior for a compacted silt, Canadian Geot. J., 44, 3, 266–275 (2007) [CrossRef] [Google Scholar]
  42. U.S. Dept. of Defense, NAVFACS DM7.1 Soil Mechanics, UFC 3-220-10 (2022) [Google Scholar]
  43. R.D. Holtz, W.D. Kovacs, T. Sheahan, An Introduction to Geotechnical Engineering, 2nd Ed., Prentice Hall, Upper Saddle River, NJ, (2011) [Google Scholar]
  44. S. Vanapalli, L. Lu, A state-of-the art review of 1-D heave prediction methods for expansive soils, International J. of Geot. Engr., 6, 1, 15–41 (2012) [CrossRef] [Google Scholar]
  45. A. Olaiz, S. Houston, C. Zapata, M. Mosawi Suction-volume change Indices for natural and recompacted clay soils, Proc., GeoCongress 2023, ASCE, in press (2023). [Google Scholar]
  46. T. Gaspar, S. Jacobsz, G. Hermann, D. Toll, A. Gens, A. Osman, The mechanical properties of a high plasticity expansive clay, Engineering Geology, 303, 20 (2022) [Google Scholar]
  47. ASTM, ASTM D4829-21, Standard test method for expansion index of soils, Book of Standards Volume: 04.08, DOI: 10.1520/D4829-21 (2021) [Google Scholar]
  48. C. Zapata, S. Houston, W. Houston, H. Dye,. Expansion index and its relationship with other index properties, ASCE, Geotechnical Special Publication 147, ASCE, Proc. 4th International Conference on Unsaturated Soil, 2133-2137 (2006) [Google Scholar]
  49. ASTM, ASTM D5333-92(1996) Standard test method for measurement of collapse potential of soils, Book of Standards Volume: 04.08 DOI: 10.1520/D5333-92R96 (1996) [Google Scholar]
  50. J. Loehr, A. Lutenegger, B. Rosenblad, A. Boeckmann, Geotechnical site characterization, Geotechnical Engineering Circular No. 5, FHWA NHI-16-072 (2016) [Google Scholar]
  51. S. Houston, M. El-Ehwany, Sample disturbance of cemented collapsible soils, J. of Geotechnical Div., ASCE, 117, 5, 731 – 752 (1991) [CrossRef] [Google Scholar]
  52. S. Houston, Characterization of unsaturated soils: the importance of response to wetting, Geotechnical Special Publication, 235, ASCE, 77-96 (2014) [Google Scholar]
  53. J. E. Jennings, K. Knight, The additional settlement of foundations due to a collapse of structure of sandy subsoils on wetting, Proc. 4th Int. Conf. on Soil Mech. & Found. Eng. 1, 316-319 (1957) [Google Scholar]
  54. Z. Ofer, G. Blight, Measurement of swell pressure in the laboratory and in-situ, Evaluation and control of expansive soils, Transportation Research Record, 1032, Transportation Research Board, 15- 22 (1985) [Google Scholar]
  55. D. Snethen, L. Johnson, L., D. Patrick, Evaluation of expedient methodology for identification of potentially expansive soil, FHWA-RD-77-94 (1977) [Google Scholar]
  56. H. Schreiner, J. Burland, C. Gourley, Swell and collapse of a partially saturated expansive clay, Proc. 13th Int’l conf on Soil Mechanics and Foundation Engineering, New Delhi, pp 1501 – 1505 (1994) [Google Scholar]
  57. R. Soundara, R. Robinson, Influence of test method on swelling pressure of compacted clay, Int’l J. Geotechnical Engineering, doi: 10.3328/IJGE.2009.03.03.439-444 (2009) [Google Scholar]
  58. A. Sridaran, A. Rao, P. Sivapullaiah, Swelling pressure of clay, Geotechnical Testing Journal, 2. (1986) [Google Scholar]
  59. S. Singhal, S. Houston, W. Houston, Effects of testing procedures on the laboratory determination of swell pressure of expansive soils, Geotechnical Testing Journal, 34, 5, ASTM, 476-488 (2011) [Google Scholar]
  60. R. Thompson, H. Perko, W. Rethamel, Comparison constant volume swell pressure and load-back oedometer swell pressure, Unsaturated Soils, Proc of the 4th International Conf. on Unsaturated Soils, ASCE, (2006) [Google Scholar]
  61. K. Kayabali, S. Demir, Measurement of swelling pressure: direct method versus indirect methods, Canadian Geot. J., (2011) [Google Scholar]
  62. ASTM D4546-14, Standard test methods for one-dimensional swell or collapse of soils. ASTM International, Book of Standards Volume: 04.08, Developed by Subcommittee: D18.05, West Conshohocken, PA. (2014) [Google Scholar]
  63. D. Fredlund, H. Rahardjo, M. Fredlund, Unsaturated Soil Mechanics in Engineering Practice, Wiley (2012) [CrossRef] [Google Scholar]
  64. G. Blight, A study of effective stresses for volume change, Proc. moisture equilibrium and moisture changes in soils beneath covered areas, Butterworth, Australia, 250-267 (1965) [Google Scholar]
  65. S. Houston, W. Houston, Suction-oedometer method for computation of heave and remaining heave, Proc. PanAm Unsaturated Soils 2017, ASCE, 93–116, (2018) [Google Scholar]
  66. P. Delage, T. Vicol, T., G. de Silva, Suction controlled testing of non-saturated soils with an osmotic consolidometer, Proc. 7th Int’l Conf. on Expansive Soils, 206-211, Lubbock, TX, Texas Tech Univ. Press (1992) [Google Scholar]
  67. M. Wijaya, E.C. Leong, Performance of high-capacity tensiometer in constant water content oedometer test, Int’l J of Geo-Engineering, Springer, 7, 13 (2013) [Google Scholar]
  68. S. Bulolo, E.C. Leong, Osmostic oedometer using sodium chloride solution and reverse osmosis membrane, Geotechnical Testing Journal, ASTM, 44 (2), 483-501. Doi:10.1520/GTJ20190403 (2020) [Google Scholar]
  69. X. Zhang, H. Lu, L. Li, Characterizing Unsaturated Soil Using an Oedometer Equipped with a High Capacity Tensiometer. Journal of the Transportation Research Record, Volume: 2578, Issue: 1, 58-71, DOI: 10.3141/2578-07 (2016) [CrossRef] [Google Scholar]
  70. D.G. Fredlund, S. Houston, Interpretation of soil-water characteristic curves when volume change occurs as soil suction is changed, Advances in Unsaturated Soils, Proc. 1st Pan-American Conf. on Unsaturated Soils, Cartagena de Indias Columbia, Taylor and Francis-Balkema, 15-31 (2013) [Google Scholar]
  71. S. Tripathy, S. Al-Khyat, P. Cleall, P., Impact of single and ultiple specien suction control oedomter testing on the measurement of the soil-water-characteristic curve, Geotechnical Testing J,ASTM, 44, 6, doi:10.1520/GTJ20200341 (2021) [Google Scholar]
  72. N. Perez-Garcia, S. Houston, W. Houston, M. Padilla, An oedometer-type pressure plate SWCC apparatus, Geotechnical Testing Journal, ASTM, 31, 2, 115-123 (2008) [Google Scholar]
  73. S. Singhal, Expansive soil behavior: property measurement techniques and heave prediction methods, PhD dissertation, Arizona State University, Tempe, AZ, USA (2010) [Google Scholar]
  74. J. Vann, S. Houston, Field soil suction profiles for expansive soils, J. Geot. and Geoenv. Engr., 147, 9, (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.