Open Access
Issue
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
Article Number 22003
Number of page(s) 6
Section Long-Term Measurements of Suction in the Field and their Relation to Climatic Parameters - Part I
DOI https://doi.org/10.1051/e3sconf/202338222003
Published online 24 April 2023
  1. K. C. Onyelowe, F. F. Mojtahedi, S. Azizi, H. A. Mahdi, E. R. Sujatha, A. M. Ebid, … & F. I. Aneke, (2022). Innovative overview of SWRC application in modeling geotechnical engineering problems. Designs, 6(5), 69. [CrossRef] [Google Scholar]
  2. S. F. F. Mojtahedi, & M. Sadoughi (2017). Estimation of Soil Moisture Profile Using Optimization Methods. Int. J. Model. Optim., 7(1), 54. [Google Scholar]
  3. X. F. Chen, Z. M. Wang, Z. L. Wang, & R. Li, (2014). Drought evaluation and forecast model based on soil moisture simulation. Chin. Rural Water Hydropower, 5, 165–169. [Google Scholar]
  4. S. H. U. Su-fang, Q. I. A. N. Hua-feng & Q. I. U. Xiao-wei (2009). Soil moisture forecast model based on meteorological factors in Jinhua City. Chin. J. Agrometeorol, 30(02), 180. [Google Scholar]
  5. S. A. A. Hosseini, S. F. F. Mojtahedi, & H. Sadeghi, (2020). Optimization of deep mixing technique by artificial neural network based on laboratory and field experiments. Georisk, 14(2), 142–157. [Google Scholar]
  6. M. Rezaee, S. F. F. Mojtahedi, E. Taherabadi, K. Soleymani, & M. Pejman (2021). Prediction of shear strength parameters of hydrocarbon contaminated sand based on machine learning methods. Georisk, 15(4), 317–335. [Google Scholar]
  7. S. F.F. Mojtahedi, A. Ahmadihosseini, & H. Sadeghi (2022). An artificial intelligence-based data-driven method for forecasting unconfined compressive strength of cement stabilized soil by deep mixing technique. Geotech. Geol. Eng., 1–24. [Google Scholar]
  8. X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, & Y. Wang (2017). Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 17(4), 818. [CrossRef] [PubMed] [Google Scholar]
  9. X. Ma, Z. Tao, Y. Wang, H. Yu, & Y. Wang (2015). Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol., 54, 187–197. [CrossRef] [Google Scholar]
  10. C. Qiu, Y. Zhang, Z. Feng, P. Zhang, & S. Cui (2018). Spatio-temporal wireless traffic prediction with recurrent neural network. IEEE Wireless Commun. Lett., 7(4), 554–557. [CrossRef] [Google Scholar]
  11. S. Dorafshan, R. J. Thomas, & M. Maguire (2018). Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build Mater., 186, 1031–1045. [CrossRef] [Google Scholar]
  12. Y. Gao, & K. M. Mosalam, (2018). Deep transfer learning for image‐based structural damage recognition. Comput-Aided Civ. Inf., 33(9), 748–768. [CrossRef] [Google Scholar]
  13. Z. Fang, Y. Wang, L. Peng, & H. Hong (2020). Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput and Geosci, 139, 104470. [CrossRef] [Google Scholar]
  14. M. M. Bejani, & M. Ghatee (2019). Regularized deep networks in intelligent transportation systems: A taxonomy and a case study. arXiv preprint arXiv:1911.03010. [Google Scholar]
  15. Z. Ghorbani, A. Khosravi, Y. Maghsoudi, F. F. Mojtahedi, E. Javadnia, & A. Nazari, (2022). Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran. Sci. Rep., 12(1),1–22. [CrossRef] [Google Scholar]
  16. F. F. Mojtahedi, K. Ali, A. Nazari, S. Rezvani, A. Khatami, & N. Ahmadi (2018). Measurement of Moisture and Temperature Profiles in Different Layers of Soil. In IFCEE 2018 (pp. 266–278). [Google Scholar]
  17. S. K. Das, (2013). Artificial Neural Networks in Geotechnical Engineering. Metaheuristics Water, Geotech. Transp. Eng., Elsevier, 231–70. [Google Scholar]
  18. P. Zhang, Y. Yin, Y. Zheng & F. P. Gao (2020). A LSTM surrogate modelling approach for caisson foundations. Ocean Eng., 204, 107263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.