Open Access
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 03019
Number of page(s) 6
Section Thermochemical Engineering and Waste Treatment
Published online 04 May 2023
  1. Kurata, Y., Ono, Y., & Ono, Y. (2008). Occurrence of phenols in leachates from municipal solid waste landfill sites in Japan. Journal of material cycles and waste management, 10, 144–152. [CrossRef] [Google Scholar]
  2. Yulan. Study on new methods for detection of three phenolic environmental hormones [D]. Donghua University, 2006 [Google Scholar]
  3. Suyamud B., Thiravetyan P., Panyapinyopol B., Inthorn D. (2018) Dracaena sanderiana endophytic bacteria interactions: effect of endophyte inoculation on bisphenol a removal. Ecotoxicol Environ Saf 157: 318–326. [CrossRef] [PubMed] [Google Scholar]
  4. Senesi, N.; Xing, B.; Huang, P. M. Biophysico-chemical processes involving natural organic matter in environmental systems; IUPAC: New York, 2006. [Google Scholar]
  5. N.A. Wall, G.R. Choppin Humic acids coagulation: influence of divalent cations Appl. Geochem., 18 (10) (2003), pp. 1573–1582 [Google Scholar]
  6. Irina Levchuk, Removal of natural organic matter (NOM) from water by ion exchange - A review. Chemosphere 192 (2018) 90–104 [CrossRef] [PubMed] [Google Scholar]
  7. Minerals in soil environments. In: Dixon, J.B., Weed, S.B., Dinauer, R.C. (Eds.), Soil Science Society of America Book Series, second ed. Soil Science Society of America, Madison, Wis., USA. (1989). [Google Scholar]
  8. Zhang Shuiqin, Yuan Liang, Lin Zhian, et al. Advances in studies on mechanism of humic acid promoting plant growth [J]. Plant Nutrition and Fertilizer Journal, 2017, 23(4): 1065–1076. (in Chinese) [Google Scholar]
  9. Baranwal, P., Kang, D. W., & Seo, Y. (2022). Impacts of algal organic matter and humic substances on microcystin-LR removal and their biotransformation during the biodegradation process. Science of The Total Environment, 852, 157993. [CrossRef] [Google Scholar]
  10. Mazzeia, P.; Oschkinatb, H.; Piccolo, A. Reduced activity of alkaline phosphatase due to host - guest interactions with humic superstructures. Chemosphere 2013, 93, 72–79. [Google Scholar]
  11. Mazzei, P.; Piccolo, A. Quantitative Evaluation of Noncovalent Interactions between Glyphosate and Dissolved Humic Substances by NMR Spectroscopy. Environ. Sci. Tech. 2012, 46, 5939–5946 [CrossRef] [PubMed] [Google Scholar]
  12. Li, X., Liu, H., Yang, W., Sheng, H., Wang, F., Harindintwali, J. D., … & Zhang, Y. (2022). Humic acid enhanced pyrene degradation by Mycobacterium sp. NJS-1. Chemosphere, 288, 132613. [CrossRef] [PubMed] [Google Scholar]
  13. Stone, N., Kendall, C., Smith, J., Crow, P., Barr, H., 2004. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126, 141–157. [CrossRef] [PubMed] [Google Scholar]
  14. Xie, Y., Gu, Z., Herath, H., Gu, M., He, C., Wang, F., Jiang, X., Zhang, J., Zhang, Y., 2017. Evaluation of bacterial biodegradation and accumulation of phenanthrene in the presence of humic acid. Chemosphere 184, 482–488. [CrossRef] [PubMed] [Google Scholar]
  15. Yang, Y., Zhang, N., Xue, M., Lu, S.T., Tao, S., 2011. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials. Environ. Pollut. 159, 591–595 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.