Open Access
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 03025
Number of page(s) 5
Section Thermochemical Engineering and Waste Treatment
Published online 04 May 2023
  1. Guo Yf, Huang K., Li Zg. 2019 J. Rapid prediction of health status of li-ion batteries based on short-term open circuit voltage drop. Transactions of China Electrotechnical Society. 34(19) 3968–3978. [Google Scholar]
  2. Zhang Cl, Zhao Ss, Zhang B.J. 2021 Rapid sorting method for retired power batteries based on factor analysis and K-means clustering. Power System Protection and Control, 49(12) 41–47. [Google Scholar]
  3. Yin Jj, Wang Wx\, Yuan Xx, Xu W., Li X., He Zx. 2020 Study on rapid evaluation and sorting method for retired li-ion batteries. Journal of Chongqing University of Technology (Natural Science), 34(02) 15–23. [Google Scholar]
  4. Huang J., Li Jl, Li, Z. 2021 J. Rapid evaluation method for health status of retired li-ion batteries[J]. Power System Protection and Control, 49(12) 25–32. [Google Scholar]
  5. Lai X., Hou Sq, Zheng Yj, Han Xb. 2022 J. Rapid estimation method of capacity for li-ion battery packs based on remaining charge. Journal of China University of Highway, 35(08) 11–19. [Google Scholar]
  6. Zheng Yj, Li Jq, Zhu Zw, Lai X., Zhou Z. 2020 J. Rapid sorting technology for retired li-ion battery modules based on fast charging curves. Power System Technology, 44(05) 1664–1673. [Google Scholar]
  7. Xiao B., Xiao B., Liu Ls. 2020 J. Rapid measurement method for lithium-ion battery state of health estimation based on least squares support vector regression. International Journal of Energy Research, 45(4) 5695–5709. [Google Scholar]
  8. Meng J.H., Ioan S.D., Mattia R., Luo G.Z., Maciej S., Remus T. 2019 J.A Novel Multiple Correction Approach for Fast Open Circuit Voltage Prediction of Li-ion Battery. IEEE Transactions on Energy Conversion, 34(2) 1115–1123. [CrossRef] [Google Scholar]
  9. Lin C., Xu J., Shi M., et al. 2022 J. Constant current charging time based fast state-of-health estimation for li-ion batteries. Energy, 247 123556. [CrossRef] [Google Scholar]
  10. Ahmeid M., Muhammad M., Lambert S., et al. 2022 J. A rapid capacity evaluation of retired electric vehicle battery modules using partial discharge test. Journal of Energy Storage, 50 104562. [CrossRef] [Google Scholar]
  11. Tang X., Zou C., Yao K., et al. 2018 J. A fast estimation algorithm for li-ion battery state of health. Journal of Power Sources, 396 453–458. [CrossRef] [Google Scholar]
  12. Li Xy, Wang Zp, Yan Jy. 2019 J. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. Journal of Power Sources, 421 56–67. [CrossRef] [Google Scholar]
  13. Luo F., Huang H.H., Wang H.X.. 2021 J. Rapid prediction of state of charge and health status of retired power batteries based on electrochemical impedance spectroscopy. Chinese Journal of Scientific Instrument, 42(09) 172–180. [Google Scholar]
  14. Luo F., Huang H.H., Wang, H.X.. 2022 J. Rapid sorting and recombination method for retired power batteries based on short pulse discharge and electrochemical impedance spectroscopy. Chinese Journal of Scientific Instrument, 43(01) 229–238. [Google Scholar]
  15. Su Xja, Sun Bx, Wang Jj, Zhang Wg, Ma Sc, He Xt, Ruan Hj. 2022 J. Fast capacity estimation for li-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression. Applied Energy, 322 119516. [CrossRef] [Google Scholar]
  16. Wang Q., Sun J., Wu H., et al. 2022 J. Fast cycle life evaluation method for ternary li-ion batteries based on divided SOC intervals. Journal of Power Electronics, 22(5) 831–840. [CrossRef] [Google Scholar]
  17. Ning J., Xiao B., Zhong W., et al. 2022 J. A rapid detection method for the battery state of health. Measurement, 189 110502. [CrossRef] [Google Scholar]
  18. Zhang, S.Z. Guo X., Dou X.X., Zhang X.W. 2020 J. A rapid online calculation method for state of health of li-ion battery based on coulomb counting method and differential voltage analysis. Journal of Power Sources, 479 228740. [CrossRef] [Google Scholar]
  19. He J.B., Tian Y., Wu Lf. 2022 J. A hybrid data-driven method for rapid prediction of li-ion battery capacity. Reliability Engineering and System Safety, 226 108674. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.