Open Access
Issue
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 03033
Number of page(s) 5
Section Thermochemical Engineering and Waste Treatment
DOI https://doi.org/10.1051/e3sconf/202338503033
Published online 04 May 2023
  1. Weber N., Galindo V., Stefani F. Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them[J/OL]. Journal of Power Sources, 2014, 265: 166–173. DOI: 10.1016/j.jpowsour.2014.03.055. [CrossRef] [Google Scholar]
  2. Stefani F., Weier T., Gundrum T. How to circumvent the size limitation of liquid metal batteries due to the Tayler instability[J/OL]. Energy Conversion and Management, 2011, 52(8-9): 2982–2986. DOI: 10.1016/j.enconman.2011.03.003. [CrossRef] [Google Scholar]
  3. Weber N., Beckstein P., Galindo V. Metal pad roll instability in liquid metal batteries[J/OL]. Magnetohydrodynamics, 2017, 53(1): 129–140. DOI: 10.22364/mhd.53.1.14. [CrossRef] [Google Scholar]
  4. Horstmann G.M., Weber N., Weier T. Coupling and stability of interfacial waves in liquid metal batteries[M/OL]. arXiv, 2017[2022-09-29]. http://arxiv.org/abs/1708.02159. [Google Scholar]
  5. Keogh D.F., Timchenko V., Reizes J. Modelling Rayleigh-Bénard convection coupled with electrovortex flow in liquid metal batteries[J/OL]. Journal of Power Sources, 2021, 501: 229988. DOI: 10.1016/j.jpowsour.2021.229988. [CrossRef] [Google Scholar]
  6. Köllner T., Boeck T., Schumacher J. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model[J/OL]. Physical Review E, 2017, 95(5): 053114. DOI: 10.1103/PhysRevE.95.053114. [CrossRef] [PubMed] [Google Scholar]
  7. Personnettaz P., Beckstein P., Landgraf S. Thermally driven convection in Li||Bi liquid metal batteries[J/OL]. Journal of Power Sources, 2018, 401: 362–374. DOI: 10.1016/j.jpowsour.2018.08.069. [CrossRef] [Google Scholar]
  8. Kolesnichenko I., Frick P., Eltishchev V. Evolution of a strong electrovortex flow in a cylindrical cell[J/OL]. Physical Review Fluids, 2020, 5(12): 123703. DOI: 10.1103/PhysRevFluids.5.123703. [CrossRef] [Google Scholar]
  9. Herreman W., Bénard S., Nore C. Solutal buoyancy and electrovortex flow in liquid metal batteries[J/OL]. Physical Review Fluids, 2020, 5(7): 074501. DOI: 10.1103/PhysRevFluids.5.074501. [CrossRef] [Google Scholar]
  10. Herreman W., Nore C., Ziebell Ramos P. Numerical simulation of electrovortex flows in cylindrical fluid layers and liquid metal batteries[J/OL]. Physical Review Fluids, 2019, 4(11): 113702. DOI: 10.1103/PhysRevFluids.4.113702. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.