Open Access
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 04006
Number of page(s) 7
Section Polymer Chemistry and Chemical Research Progress
Published online 04 May 2023
  1. Al-Ghussain, L., Global warming: Review on driving forces and mitigation. Environmental Progress & Sustainable Energy 2019, 38 (1), 13–21. [CrossRef] [Google Scholar]
  2. Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M., Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge university press: 2007; Vol. 4. [Google Scholar]
  3. Logan, C. A., A review of ocean acidification and America's response. BioScience 2010, 60 (10), 819–828. [CrossRef] [Google Scholar]
  4. Pingkuo, L.; Xue, H., Comparative analysis on similarities and differences of hydrogen energy development in the World's top 4 largest economies: A novel framework. International Journal of Hydrogen Energy 2022, 47 (16), 9485–9503. [CrossRef] [Google Scholar]
  5. Yongwei, Z. Chinese hydrogen energy development industry report 2020; 2020. [Google Scholar]
  6. Crabtree, R. H., Hydrogen storage in liquid organic heterocycles. Energy & Environmental Science 2008, 1 (1), 134–138. [CrossRef] [Google Scholar]
  7. Hua, T.; Ahluwalia, R.; Peng, J.-K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J., Technical assessment of compressed hydrogen storage tank systems for automotive applications. International Journal of Hydrogen Energy 2011, 36 (4), 3037–3049. [CrossRef] [Google Scholar]
  8. Jiekai, Y., Spatial Confinement Modification on Lithium Borohydride for Highly Reversible Hydrogen Storage. 2021. [Google Scholar]
  9. Zhang, Y.Y.; Zhao, J.; Lu, X.L.; Zhang, D.X., Progress in the research of organic liquid hydrogen storage materials. Chemical Progress 2016, 35 (09), 2869–2874. [Google Scholar]
  10. Nijkamp, M.; Raaymakers, J.; Van Dillen, A.; De Jong, K., Hydrogen storage using physisorption — materials demands. Applied Physics A 2001, 72 (5), 619–623. [CrossRef] [Google Scholar]
  11. Yang, S. J.; Choi, J. Y.; Chae, H. K.; Cho, J. H.; Nahm, K. S.; Park, C. R., Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@ MOF-5 hybrid composite. Chemistry of Materials 2009, 21 (9), 1893–1897. [CrossRef] [Google Scholar]
  12. Hou, Q.; Yang, X.; Zhang, J., Review on hydrogen storage performance of MgH2: development and trends. ChemistrySelect 2021, 6 (7), 1589–1606. [CrossRef] [Google Scholar]
  13. Zhang, L.; Ji, L.; Yao, Z.; Yan, N.; Sun, Z.; Yang, X.; Zhu, X.; Hu, S.; Chen, L., Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. International Journal of Hydrogen Energy 2019, 44 (39), 21955–21964. [CrossRef] [Google Scholar]
  14. Kang, X.-D.; Wang, P.; Ma, L.-P.; Cheng, H.-M., Reversible hydrogen storage in LiBH4 destabilized by milling with Al. Applied Physics A 2007, 89 (4), 963–966. [CrossRef] [Google Scholar]
  15. Yang, Z.; Xia, Y.; Mokaya, R., Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. Journal of the American Chemical Society 2007, 129 (6), 1673–1679. [CrossRef] [PubMed] [Google Scholar]
  16. Xia, Y.; Mokaya, R.; Grant, D. M.; Walker, G. S., A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties. Carbon 2011, 49 (3), 844–853. [CrossRef] [Google Scholar]
  17. Wang, H.; Gao, Q.; Hu, J., High hydrogen storage capacity of porous carbons prepared by using activated carbon. Journal of the American Chemical Society 2009, 131 (20), 7016–7022. [CrossRef] [PubMed] [Google Scholar]
  18. Wang, Y.; Li, A.; Wang, K.; Guan, C.; Deng, W.; Li, C.; Wang, X., Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium. Journal of Materials Chemistry 2010, 20 (31), 6490–6494. [CrossRef] [Google Scholar]
  19. Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G., Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences 2005, 102 (30), 10439–10444. [CrossRef] [PubMed] [Google Scholar]
  20. Wang, L.; Lee, K.; Sun, Y.-Y.; Lucking, M.; Chen, Z.; Zhao, J. J.; Zhang, S. B., Graphene oxide as an ideal substrate for hydrogen storage. ACS nano 2009, 3 (10), 2995–3000. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.