Open Access
E3S Web Conf.
Volume 386, 2023
Annual International Scientific Conferences: GIS in Central Asia – GISCA 2022 and Geoinformatics – GI 2022 “Designing the Geospatial Ecosystem”
Article Number 01007
Number of page(s) 8
Section GIS in Agriculture
Published online 12 May 2023
  1. Y. Amsavalli, P. S. Mayurappriyan, and M. Saravana Mohan, “Plant Disease Detection Robot” Int. Conf. Adv. Electr. Electron. Commun. Comput. Autom. ICAECA 2021, 1433-1435, doi: 10.1109/ICAECA52838.2021.9675776 (2021) [Google Scholar]
  2. G. Kalyani, “E-agrobot-a robot for early crop disease detection using raspberry pi” Int. J. Adv. Sci. Technol., 29, 3298-3309, (2020) [Google Scholar]
  3. Baratov R and Valikhonova H The fundamental principles of creating an intellectual system for measuring and controlling the physiological state of the wheat plant, J. Agro ilm, 6, 12 (2021) [Google Scholar]
  4. R. Baratov, “AGRO ILM” Agricultural Journal of Uzbekistan, 2 (76), Available: (2022) [Google Scholar]
  5. J. M. Prescott, P. A. Burnet, E. E. Sari, J. Ransom, Diseases and Pests of Wheat (GTZ Summit, Almaty, 2002) [Google Scholar]
  6. Means of combating harmful organisms of agricultural crops [Google Scholar]
  7. J. M. Prescott, P. A. Burnett, E. E. Sari, J. Ransome, J. Bowman, W. de Milliano, J. Singh, G. Bekele, Diseases and pests of wheat, 25 [Google Scholar]
  8. R. Baratov, Y. Chulliyev, S. Ruziyev, “Smart system for water level and flow measurement and control in open canals”, E3S Web Conf., 264, 1-8 (2021) [Google Scholar]
  9. S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, E. Jasińska, ‘Identification of plant-leaf diseases using cnn and transfer-learning approach,’ J. Electron., 10, 12 (2021) [Google Scholar]
  10. V. V. Kumar, V. K. S, “Agricultural Robot: Leaf Disease Detection and Monitoring the Field Condition Using Machine Learning and Image Processing” Int. J. Comput. Intell. Res., 14, 551-561 (2018) [Google Scholar]
  11. J. Calantonea, S. T. Cavusgila, Y. Zhaob, “Machine Translated by Google Machine Translated by Google” Artic. Investig. Científica, 31, 515-524 (2002) [Google Scholar]
  12. P. V. Reddy, G. S. Reddy, “Smart leaf disease detection 1”, 8, 1728-1732 (2020) [Google Scholar]
  13. R. Swathi, E. Engineering, T. Mahalakshmi, C. Engineering, C. Engineering, “Vision Based Plant Leaf Disease Detection on The Color Segmentation through Fire Bird V Robot,” 1, 75-79 (2016) [Google Scholar]
  14. D. Wang et al., “Early Detection of Tomato Spotted Wilt Virus by Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (ORAC-GAN)” Sci. Rep., 9, 1-15 (2019) [Google Scholar]
  15. A. B. Rajendra, N. Rajkumar, P. D. Shetty “Areca Nut Disease Detection Using Image Processing,” Adv. Intell. Syst. Comput., 1154, 925-931, doi: 10.1007/978-981-15-40325_83 (2020) [Google Scholar]
  16. G. Dhingra, V. Kumar, H. D. Joshi, “Study of digital image processing techniques for leaf disease detection and classification,” Multimed. Tools Appl., 77, 19951-20000, doi: 10.1007/s11042-017-5445-8 (2018) [CrossRef] [Google Scholar]
  17. V. Tutygin, A. Windi, B. Khalid, M. Ali, I. Ryabtsev, “NETWORK” (2019) [Google Scholar]
  18. P. Boissard, M. Vincent, S. Moisan, A Cognitive Vision Approach to Early Pest Detection in Greenhouse Crops, J. Computers and Electronics in Agriculture, 62, 8193 (2010) [Google Scholar]
  19. S. N. Nikolenko, A. A. Kadurin, E. Arkhangelskaya, Deep learning, 481 (Piter, Moscow, 2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.