Open Access
Issue |
E3S Web Conf.
Volume 387, 2023
International Conference on Smart Engineering for Renewable Energy Technologies (ICSERET-2023)
|
|
---|---|---|
Article Number | 05013 | |
Number of page(s) | 9 | |
Section | Information Secutity | |
DOI | https://doi.org/10.1051/e3sconf/202338705013 | |
Published online | 15 May 2023 |
- A Critical Review of Wind Power Forecasting Methods—Past, Present and Future Shahram Hanifi 1, Xiaolei Liu 1,*, Zi Lin 2, 3,* and Saeid Lotfian Energies MDPI [Google Scholar]
- Zhang, F., Qiang Sun, Y., Magnusson, L., Buizza, R., Lin, S.-J., Chen, J.-H., & Emanuel, K. (2019). What is the predictability limit of midlatitude weather? Journal of the Atmospheric Sciences, Early Online, 76, 1077–1091. https://doi.org/10.1175/JAS-D-18-0269.1 [CrossRef] [Google Scholar]
- Hoffman, R. N., Kumar, V. K., Boukabara, S.-A., Ide, K., Yang, F., & Atlas, R. (2018). Progress in forecast skill at three leading global operational NWP centers during 2015-17 as seen in summary assessment metrics (sams). Weather and Forecasting, 33(6), 1661–1679. https://doi.org/10.1175/WAF-D-18-0117.1 [CrossRef] [Google Scholar]
- De Giorgi, M.G.; Ficarella, A.; Tarantino, M. Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 2011, 36, 3968–3978. [CrossRef] [CrossRef] [Google Scholar]
- Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [CrossRef] [CrossRef] [Google Scholar]
- Jung, S.; Kwon, S.D. Weighted error functions in artificial neural networks for improved wind energy potential estimation. Appl. Energy 2013, 111, 778–790. [CrossRef] [CrossRef] [Google Scholar]
- O. Kramer, F. Gieseke, B. Satzger, Wind energy prediction and monitoring with neural computation, Neurocomputing 109(2013) 84–93 [CrossRef] [Google Scholar]
- Sideratos, G.; Hatziargyriou, N.D. Probabilistic Wind Power Forecasting Using Radial Basis Function Neural Networks. IEEE Trans. Power Syst. 2012, 27, 1788–1796. [CrossRef] [CrossRef] [Google Scholar]
- S. Salcedo-Sanz, J. Rojo-Alvarez, M. Martinez-Ramon, G. Camps-Valls, Support Vector machines in engineering: an overview Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4(2014) 234–267 [CrossRef] [Google Scholar]
- Zhang, J.; Yan, J.; Infield, D.; Liu, Y.; Lien, F. sang Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Appl. Energy 2019, 241, 229–244. [CrossRef] [CrossRef] [Google Scholar]
- Haidar Samet; Saeedeh Ketabipour; Mousa Afrasiabi; Shahabodin Afrasiabi; Mohammad Mohammadi Forecaster-Based Controller for SVC: Wind Farm Flicker Mitigation IEEE Transactions on Industrial Informatics DOI 10.1109/TII.2020.3025101 [Google Scholar]
- Muhammad Fahim; Vishal Sharma; Tuan-Vu Cao; Berk Canberk; Trung, Q. Duong Machine-Learning-Based Digital Twin for Predictive Modeling in Wind Turbines IEEE Access Digital Object Identifier 10.1109/ACCESS.2022.3147602 [Google Scholar]
- Wenkang Cui; Can Wan; Yonghua Song Ensemble Deep Learning -Based Non-Crossing Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power Generation IEEE Transactions on Power Systems 10.1109/TPWRS.2022.3202236 [Google Scholar]
- https://github.com/virajmavani/predicting-wind speed [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.