Open Access
Issue
E3S Web of Conf.
Volume 388, 2023
The 4th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2022)
Article Number 02008
Number of page(s) 6
Section Big Data, Green Computing, and Information System
DOI https://doi.org/10.1051/e3sconf/202338802008
Published online 17 May 2023
  1. A. Halimatussadiah et al., Thinking Ahead : Indonesia ’ s Agenda on Sustainable Recovery from COVID -19 Pandemic. 2020. [Google Scholar]
  2. A. Yamada, L. H. Kahn, B. Kaplan, T. P. Monath, J. Woodall, and L. Conti, “Confronting Emerging Zoonoses: The one health paradigm,” Confronting Emerg. Zoonoses One Heal. Paradig., no. June, pp. 1–254, 2014. [Google Scholar]
  3. P. Chatterjee, M. Kakkar, and S. Chaturvedi, “Integrating one health in national health policies of developing countries: India’s lost opportunities,” Infect. Dis. Poverty, vol. 5, no. 1, pp. 1–5, 2016. [CrossRef] [Google Scholar]
  4. C. C. Machalaba, et al “Institutionalizing One Health: From Assessment to Action,” Heal. Secur., vol. 16, pp. S37–S43, 2018. [Google Scholar]
  5. W. A. Gebreyes, et al “The Global One Health Paradigm: Challenges and Opportunities for Tackling Infectious Diseases at the Human, Animal, and Environment Interface in Low-Resource Settings,” PLoS Negl. Trop. Dis., vol. 8, no. 11, 2014. [Google Scholar]
  6. S. Cleaveland, et al “One health contributions towards more effective and equitable approaches to health in low-and middle-income countries,” Philos. Trans. R. Soc. B Biol. Sci., vol. 372, no. 1725, 2017. [Google Scholar]
  7. D. Schmiege et al., “One Health in the context of coronavirus outbreaks: A systematic literature review,” One Heal., vol. 10, p. 100170, 2020. [CrossRef] [Google Scholar]
  8. P. A. Conrad, L. A. Meek, and J. Dumit, “Operationalizing a One Health approach to global health challenges,” Comp. Immunol. Microbiol. Infect. Dis., vol. 36, no. 3, pp. 211–216, 2013. [CrossRef] [Google Scholar]
  9. R. Djalante, et al “Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020,” Prog. Disaster Sci., vol. 6, p. 100091, 2020. [CrossRef] [Google Scholar]
  10. P. Jorwal, S. Bharadwaj, and P. Jorwal, “One health approach and COVID-19: A perspective,” J. Fam. Med. Prim. care, vol. 9, no. 12, pp. 5888–5891, 2020. [CrossRef] [PubMed] [Google Scholar]
  11. L. C. Streichert, L. P. Sepe, P. Jokelainen, C. M. Stroud, J. Berezowski, and V. J. Del Rio Vilas, “Participation in One Health Networks and Involvement in the COVID-19 Pandemic Response: A Global Study,” Frontiers in Public Health , vol. 10. 2022. [CrossRef] [Google Scholar]
  12. M. G. Hemida and M. M. Ba Abduallah, “The SARS-CoV-2 outbreak from a one health perspective,” One Heal., vol. 10, p. 100127, 2020. [CrossRef] [Google Scholar]
  13. T. Xie, et al.“A system dynamics approach to understanding the One Health concept,” PLoS One, vol. 12, no. 9, pp. 1–11. [Google Scholar]
  14. K. M. Errecaborde, et al. “Piloting the One Health Systems Mapping and Analysis Resource Toolkit in Indonesia,” Ecohealth, vol. 14, no. 1, pp. 178–181, 2017. [CrossRef] [PubMed] [Google Scholar]
  15. S. E. Jordan, et al “Using twitter for public health surveillance from monitoring and prediction to public response,” Data, vol. 4, no. 1, 2019. [Google Scholar]
  16. A. Abbasi, A. Hassan, and M. Dhar, “Benchmarking twitter sentiment analysis tools,” Proc. 9th Int. Conf. Lang. Resour. Eval. Lr. 2014, no. May, pp. 823–829, 2014. [Google Scholar]
  17. S. Elbagir and J. Yang, “Language Toolkit and VADER Sentiment,” Proc. Int. MultiConference Eng. Comput. Sci., vol. 0958, pp. 12–16, 2019. [Google Scholar]
  18. T. Pano and R. Kashef, “A complete vader-based sentiment analysis of bitcoin (BTC) tweets during the ERA of COVID-19,” Big Data Cogn. Comput., vol. 4, no. 4, pp. 1–17, 2020. [CrossRef] [Google Scholar]
  19. J. Chakaya et al., “Global Tuberculosis Report 2020 – Reflections on the Global TB burden, treatment and prevention efforts,” Int. J. Infect. Dis., vol. 113, pp. S7–S12, 2021. [CrossRef] [Google Scholar]
  20. S. F. Waterloo, et al. “Norms of online expressions of emotion: Comparing Facebook, Twitter, Instagram, and WhatsApp,” New Media Soc., vol. 20, no. 5, pp. 1813–1831, 2018. [CrossRef] [PubMed] [Google Scholar]
  21. E. Ferrara and Z. Yang, “Quantifying the effect of sentiment on information diffusion in social media,” PeerJ Comput. Sci., vol. 2015, no. 9, pp. 1–15, 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.