Open Access
Issue
E3S Web of Conf.
Volume 388, 2023
The 4th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2022)
Article Number 02010
Number of page(s) 6
Section Big Data, Green Computing, and Information System
DOI https://doi.org/10.1051/e3sconf/202338802010
Published online 17 May 2023
  1. A. N. Rafi'i, “Rancang Bangun Absensi Berbasis Fa Menggunakan Phyton,” eJournal Mahasiswa Ak Jakarta (eMIT), vol. 2, no. 2, 2020. [Google Scholar]
  2. A. Pramono, P. Ardanari and M. Maslim, “Pembangunan Aplikasi Presensi Magang Berbasis Mobile Menggunakan Face Recognition,” Jurnal Informatika Atma Jogja, vol. 1, no. 1, pp. 11-17, 2020. [Google Scholar]
  3. N. W. Marti and K. Y. Aryanto, "Prototipe Sistem Absensi Berbasis Face recognition Dengan Metode Eigenface," in In Seminar Nasional Vokasi dan Teknologi (SEMNASVOKTEK), Denpasar-Bali, 2016. [Google Scholar]
  4. M. Zulfiqar, F. Syed, M. J. Khan and K. Khurshid, "Deep face recognition for biometric authentication," in In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 2019, July. [Google Scholar]
  5. J. B. Mazumdar and S. R. Nirmala, “Retina Based Biometric Authentication System: A Review,” International Journal of Advanced Research in Computer Science, 9(1), 2018. [Google Scholar]
  6. O. Ogbanufe and D. J. Kim, “Comparing fingerprint-based biometrics authentication versus traditional authentication methods for e-payment.," Decision Support Systems, vol. 106, pp. 1-14, 2018. [CrossRef] [Google Scholar]
  7. S. Hemalatha, "A systematic review on Fingerprint based Biometric Authentication System.," in In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 2020, February. [Google Scholar]
  8. T. Sabhanayagam, V. P. Venkatesan and K. Senthamaraikannan, “A comprehensive survey on various biometric systems. International,” Journal of Applied Engineering Research, 13(5), pp. 2276-2297, 2018. [Google Scholar]
  9. S. Roy, P. Dutta, A. Bhowmik, B. Roy, K. Sourav and L. Kumari, "Identification of medical disorders in eye and biometric authentication analysis with iris retina scan using machine learning.," Biotechnology and Biological Sciences, pp. 29-33, 2019. [Google Scholar]
  10. A. Patil, R. Kruthi and S. Gornale, “Analysis of multi-modal biometrics system for gender classification using face, iris and fingerprint images.," International Journal of Image, Graphics and Signal Processing, vol. 10, no. 5, p. 34, 2019. [CrossRef] [Google Scholar]
  11. S. Singh and S. V. A. V. Prasad, “Techniques and challenges of face recognition: A critical review.," Procedia computer science, 143, pp. 536-543, 2018. [CrossRef] [Google Scholar]
  12. I. F. Rozi, E. N. Hamdana and M. B. Alfahmi, “Pengembangan Aplikasi Analisis Sentimen Twitter Menggunakan Metode Naïve Bayes Classifier (Studi Kasus Samsat Kota Malang),” Jurnal Informatika Polinema, vol. 4, no. 2, pp. 149-149, 2018. [CrossRef] [Google Scholar]
  13. M. Naveena, G. H. Kumar and P. Navya, "Detection of a Person in a Crowd Based on Skin Color Segmentation , Communications and Informatics (ICACCI)," in International Conference on Advances in Computing, 2016. [Google Scholar]
  14. L. K. Pavithra, "Empty Seat Revelation Using Face Detection and Correlation Matching," in In 2018 International Conference on Recent Trends in Advance Computing (ICRTAC), 2018. [Google Scholar]
  15. E. B. Putranto, P. A. Situmorang and A. S. Girsang, "Face Recognition Using Eigenface with Naive Bayes," in In 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), 2016, November. [Google Scholar]
  16. M. Ihsan, N. B. A. Karna and R. Patmasari, "Desain Sistem Pengenalan Wajah Menggunakan Raspberry Pi 3."," eProceedings of Engineering 6.2, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.