Open Access
Issue |
E3S Web of Conf.
Volume 388, 2023
The 4th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2022)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 7 | |
Section | Big Data, Green Computing, and Information System | |
DOI | https://doi.org/10.1051/e3sconf/202338802012 | |
Published online | 17 May 2023 |
- Kementrian Kesehatan RI, “Situasi Penyakit Kanker Indonesia,” Pus. Data dan Inf. Kemenkes RI, no. 2, pp. 31–33, 2015. [Google Scholar]
- F. Ma’arif and T. Arifin, “Optimasi Fitur Menggunakan Backward Elimination dan Algoritma SVM untuk Klasifikasi Kanker Payudara,” J. Inform., vol. 4, no. 1, pp. 46–53, 2017. [Google Scholar]
- Kementrian Kesehatan RI, “Penyakit Kanker di Indonesia Berada Pada Urutan 8 di Asia Tenggara dan Urutan 23 di Asia,” Januari 31, 2019, 2019. [Google Scholar]
- S. K. Nur Handayani, “Kanker dan Serba-Serbinya (Hari Kanker Sedunia 2022),” February 4, 2022, 2022. [Google Scholar]
- Anggorowati, “Faktor Risiko Kanker Payudara Wanita,” KESMAS - J. Kesehat. Masy., vol. 8, no. 2, pp. 121–126, 2013. [Google Scholar]
- A. M. Zamani and B. Amaliah, “Implementasi Algoritma Genetika pada Struktur Backpropagation Neural Network untuk Klasifikasi Kanker Payudara,” Tek. ITS, vol. 1, 2012. [Google Scholar]
- H. Sharma, P. Singh, and A. Bhardwaj, “Breast Cancer Detection: Comparative Analysis of Machine Learning Classification Techniques,” in 2022 International Conference on Emerging Smart Computing and Informatics, ESCI 2022, 2022. [Google Scholar]
- Y. A. Badr and A. H. Abou El-Naga, “A Hybrid Metaheuristic Approach for Automatic Clustering of Breast Cancer,” in 5th International Conference on Computing and Informatics, ICCI 2022, 2022, pp. 392–399. [Google Scholar]
- S. Suthagar, C. Snegha, M. Sureka, and S. Velmurugan, “Analysis of Breast Cancer Classification using Various Algorithms,” in Proceedings - 6th International Conference on Computing Methodologies and Communication, ICCMC 2022, 2022, pp. 1286–1291. [Google Scholar]
- M. Monirujjaman Khan et al., “Machine Learning Based Comparative Analysis for Breast Cancer Prediction,” J. Healthc. Eng., vol. 2022, 2022. [CrossRef] [Google Scholar]
- S. Tounsi, I. F. Kallel, and M. Kallel, “Breast cancer diagnosis using feature selection techniques,” in 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2022, 2022. [Google Scholar]
- M. Deva Priya, J. Sangeetha Priya, S. Sam Peter, V. Ravi, S. Karthik, and R. Karthik, “Efficient Machine Learning-Based Diagnosis System for Breast Cancer,” in Lecture Notes in Networks and Systems, 2022, vol. 341, pp. 695–708. [CrossRef] [Google Scholar]
- A. Priyadarshini and J. Aravinth, “Correlation Based Breast Cancer Detection using Machine Learning,” in 2021 6th International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2021, 2021, pp. 499–504. [Google Scholar]
- S. Bensaoucha, “Breast Cancer Diagnosis Using Optimized Machine Learning Algorithms,” in Proceedings - 2021 IEEE International Conference on Recent Advances in Mathematics and Informatics, ICRAMI 2021, 2021. [Google Scholar]
- U. Ilhan, K. Uyar, and E. I. Iseri, “Breast Cancer Classification Using Deep Learning,” in Advances in Intelligent Systems and Computing, 2021, vol. 1306, pp. 709–714. [CrossRef] [Google Scholar]
- P. Mekha and N. Teeyasuksaet, “Deep learning algorithms for predicting breast cancer based on tumor cells,” in ECTI DAMT-NCON 2019 - 4th International Conference on Digital Arts, Media and Technology and 2nd ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering, 2019, pp. 343–346. [Google Scholar]
- A. Wassim, E. Elarbi, and R. Khadija, “Application of Machine Learning Approaches in Health Care Sector to the Diagnosis of Breast Cancer,” in Journal of Physics: Conference Series, 2022, vol. 2224, no. 1. [Google Scholar]
- H. Saad and N. Nagarur, “Data Mining Techniques in Predicting Breast Cancer,” J. Appl. Sci., vol. 20, no. 3, pp. 124–133, 2020. [CrossRef] [Google Scholar]
- G. K. Gupta, Introduction to Data Mining with Case Studies, 3th ed. Prentice-Hall Of India Pv, 2014. [Google Scholar]
- A. Ashari, “Performance Comparison between Naïve Bayes,Decision Tree and k-Nearest Neighbor in Searching Alternative Design in an Energy Simulation Tool,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 11, pp. 33–39, 2013. [Google Scholar]
- D. Bazazeh and R. Shubair, “Comparative study of machine learning algorithms for breast cancer detection and diagnosis,” in 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), 2016, pp. 1–4. [Google Scholar]
- G. Williams, Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery. 2012. [Google Scholar]
- K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V Karamouzis, and D. I. Fotiadis, “Machine learning applications in cancer prognosis and prediction,” Comput. Struct. Biotechnol. J., vol. 13, pp. 8–17, 2015. [CrossRef] [Google Scholar]
- Z. Jun, “The Development and Application of Support Vector Machine,” J. Phys. Conf. Ser., vol. 1748, no. 5, 2021. [Google Scholar]
- A. Kumar, R. Patra, and A. Ghosh, “Model Selection for Predicting Breast Cancer using Supervised Machine Learning Algorithms,” 2020 IEEE Int. Conf. Converg. Eng. ICCE 2020 - Proc., pp. 320–324, 2020. [Google Scholar]
- A. Purwanto et al., “Perbandingan Minat Siswa Smu Pada Metode Klasifikasi Menggunakan 5 Algoritma,” IKRAITH-INFORMATIKA, vol. 2, no. 1, pp. 43–47, 2018. [Google Scholar]
- C. Smith, Decision Trees and Random Forests: A Visual Introduction for Beginners. Blue Windmill Media, 2017. [Google Scholar]
- J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision trees,” IJCSI Int. J. Comput. Sci. Issues, vol. 9, no. 5, pp. 272–278, 2012. [Google Scholar]
- C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Springer International Publishing, 2018. [CrossRef] [Google Scholar]
- C. C. Aggarwal, Data Mining: The Textbook. Springer International Publishing, 2015. [Google Scholar]
- V. Mohan, “Decision Trees : A comparison of various algorithms for building Decision Trees,” pp. 1–23, 2013. [Google Scholar]
- B. Santosa and A. Umam, Data Mining dan Big Data Analytics : Teori dan Implementasi Menggunakan Python \& Apache Spark. . [Google Scholar]
- J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems Morgan Kaufmann, 2011. [Google Scholar]
- S. Selvaraj, S. Shajahaan, and M. Chitra, “Application of Data Mining Techniques to Predict Breast Cancer,” Procedia Comput. Sci., vol. 163, pp. 11–18, 2019. [CrossRef] [Google Scholar]
- T. Patel, D. Patel, and T. Patel, “Breast Cancer Prediction Analysis Using Data Mining Techniques,” in Computer Sciences and Engineering, vol. Volume 6, 2022, pp. 623–631. [Google Scholar]
- A. P. Ayudhitama and U. Pujianto, “Analisa 4 Algoritma Dalam Klasifikasi Liver Menggunakan Rapidminer,” J. Inform. Polinema, vol. 6, no. 2, pp. 1–9, 2020. [CrossRef] [Google Scholar]
- M. Hofmann and R. Klinkenberg, RapidMiner: Data Mining Use Cases and Business Analytics Applications. CRC Press, 2016. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.