Open Access
Issue
E3S Web of Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
Article Number 03080
Number of page(s) 9
Section Precision Agriculture Technologies for Crop and Livestock Production
DOI https://doi.org/10.1051/e3sconf/202338903080
Published online 31 May 2023
  1. Buriev Kh.Ch., Fayziev A.A., Nishanova A. (2021). Statistical analysis and forecasting Dynamics of harvest quality of gourds Journal, Bulletin of Agrarian Science of Uzbekistan 1 (85), pp. 47-52. [Google Scholar]
  2. Tukhtaboev, A. A., Turaev, F., Khudayarov, B. A., Esanov, E., & Ruzmetov, K. (2020, December). Vibrations of a viscoelastic dam–plate of a hydro-technical structure under seismic load. In IOP Conference Series: Earth and Environmental Science 614 (1) pp. 012051. Doi: 10.1088/1755-1315/614/1/012051 [CrossRef] [Google Scholar]
  3. Pathan, K. A., Dabeer, P. S., & Khan, S. A. (2020). Enlarge duct length optimization for suddenly expanded flows Advances in Aircraft and Spacecraft Science 7(3) pp. 203-214. Doi: 10.12989/aas.2020.7.3.203 [Google Scholar]
  4. Khudayarov, B., Ruzmetov, K., Turaev, F., Vaxobov, V., Hidoyatova, M., Mirzaev, S., & Abdikarimov, R. (2020). Numerical modeling of nonlinear vibrations of viscoelastic shallow shells Engineering Solid Mechanics 8(3) pp. 199-204. Doi: 10.5267/j.esm.2020.1.004 [CrossRef] [Google Scholar]
  5. Kurbonov, N., & Aminov, S. (2020). Computer modeling of filtration processes with piston extrusion In Journal of Physics: Conference Series 1441 (1) pp. 012147. Doi: 10.1088/1742-6596/1441/1/012147 [CrossRef] [Google Scholar]
  6. Gulomov, O. K., Khudayarov, B. A., Turaev, F. Z., & Ruzmetov, K. S. (2021). Quadratic forms related to the voronoi⇔ s domain faces of the second perfect form in seven variables Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms 28(1) pp. 15-23. [Google Scholar]
  7. Rakhmanov, S., Turgunov, T. T., Kusharov, Z. K., & Mengnorov, A. A. (2020, December). Econometric methods for solving problems of analysis and forecasting dynamics of yield of agricultural crops. In IOP Conference Series: Earth and Environmental Science (Vol. 614, No. 1, p. 012165). IOP Publishing. [CrossRef] [Google Scholar]
  8. Papageorgiou, E. I., Markinos, A. T., & Gemtos, T. A. (2011). Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Applied Soft Computing, 11(4), 3643-3657. [CrossRef] [Google Scholar]
  9. Zhao, D., Reddy, K. R., Kakani, V. G., Read, J. J., & Koti, S. (2007). Canopy reflectance in cotton for growth assessment and lint yield prediction. European Journal of Agronomy, 26(3), 335-344. [CrossRef] [Google Scholar]
  10. Thorp, K. R., Ale, S., Bange, M. P., Barnes, E. M., Hoogenboom, G., Lascano, R. J., ... & White, J. W. (2014). Development and application of process-based simulation models for cotton production: A review of past, present, and future directions. Journal of Cotton Science, 18(1), 10-47. [Google Scholar]
  11. Chen, S., Jiang, T., Ma, H., He, C., Xu, F., Malone, R. W., ... & He, J. (2020). Dynamic within-season irrigation scheduling for maize production in Northwest China: A Method Based on Weather Data Fusion and yield prediction by DSSAT. Agricultural and Forest Meteorology, 285, 107928. [CrossRef] [Google Scholar]
  12. Zhu, Y., Goodwin, B. K., & Ghosh, S. K. (2011). Modeling yield risk under technological change: Dynamic yield distributions and the US crop insurance program. Journal of Agricultural and Resource Economics, 192-210. [Google Scholar]
  13. Livieris, I. E., Dafnis, S. D., Papadopoulos, G. K., & Kalivas, D. P. (2020). A multiple-input neural network model for predicting cotton production quantity: a case study. Algorithms, 13(11), 273. [CrossRef] [Google Scholar]
  14. Aidarova, A., Uskenov, М., Zhakeshova, A., Dosmuratova, E., & Kulanova, D. (2016). The economic analysis and prerequisites for creation of a cotton and textile cluster in the republic of kazakhstan. Indian Journal of Science and Technology, 9(5), 1-5. [Google Scholar]
  15. Darekar, A., & Reddy, A. A. (2017). Cotton price forecasting in major producing states. Economic Affairs, 62(3), 373-378. [CrossRef] [Google Scholar]
  16. Xu, W., Chen, P., Zhan, Y., Chen, S., Zhang, L., & Lan, Y. (2021). Cotton yield estimation model based on machine learning using time series UAV remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 104, 102511. [CrossRef] [Google Scholar]
  17. Hussein, F., Janat, M., & Yakoub, A. (2011). Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Spanish Journal of Agricultural Research, 9(4), 1319-1330. [CrossRef] [Google Scholar]
  18. Dhaliwal, J. K., Panday, D., Saha, D., Lee, J., Jagadamma, S., Schaeffer, S., & Mengistu, A. (2022). Predicting and interpreting cotton yield and its determinants under long-term conservation management practices using machine learning. Computers and Electronics in Agriculture, 199, 107107. [CrossRef] [Google Scholar]
  19. Aparecido, L. E. D. O., Meneses, K. C. D., Rolim de Souza, G., Carvalho, M. J. N., Pereira, W. B. S., da Silva, P. A., ... & de Moraes, J. R. D. S. C. (2022). Algorithms for forecasting cotton yield based on climatic parameters in Brazil. Archives of Agronomy and Soil Science, 68(7), 984-1001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.