Open Access
Issue |
E3S Web of Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 13 | |
Section | Land Management, Soil and Cadastres | |
DOI | https://doi.org/10.1051/e3sconf/202338904001 | |
Published online | 31 May 2023 |
- Pandey, P. Singh, L. Iyengar, Reviewbacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad. 59: 73–84 (2007) [CrossRef] [Google Scholar]
- Q. Yanga, C. Li, H. Li, Y. Li, N. Yu, Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor, Biochemical Engineering Journal. 43: 225-230 (2009) [CrossRef] [Google Scholar]
- R. V. Khandare, S. P. Govindwar, Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotech. Adv., 33, 1697–1714. https://doi.org/10.1016/j.biotechadv.2015.09.003 (2015). [CrossRef] [Google Scholar]
- Deepika Bhatia, Neeta Raj Sharma, Joginder Singh & Rameshwar S. Kanwar, Biological methods for textile dye removal from wastewater: A review, Critical Reviews in Environmental Science and Technology, 47:19, 1836-1876, DOI:10.1080/10643389.2017.1393263 (2017) [Google Scholar]
- R.G. Saratale, J.R. Banu, H. S. Shin, R.N. Bharagava, G.D. Saratale, Textile Industry Wastewaters as Major Sources of Environmental Contamination: Bioremediation Approaches for Its Degradation and Detoxification. In Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management; Saxena, G., Bharagava, R.N., Eds.; Springer International Publishing: New York, NY, USA; pp. 135–167 (2019) [Google Scholar]
- Fouda, S.E.D Hassan, M.A. Abdel-Rahman, M.M. Farag, A. Shehal-Deen, A.A. Mohamed, S.M. Alsharif, E. Saied, S.A. Moghanim, M.S. Azab, Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (Fe2O3) and magnesium oxide (MgO) nanoparticles. Curr. Res. Biotechnol, 3, 29–41 (2021) [CrossRef] [Google Scholar]
- M.T. Selim, S.S. Salem, A.A. Mohamed, M.S. El-Gamal, M.F. Awad, A. Fouda, Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. J. Fungi, 7, 193. https://doi.org/10.3390/jof7030193 (2021) [CrossRef] [Google Scholar]
- M. Mahagamage, S. Chinthaka, P.M. Manage, Multivariate analysis of physico-chemical and microbial parameters of surface water in Kelani river basin. Int. J. Multidiscip. Stud, 1, 55 (2014) [CrossRef] [Google Scholar]
- E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Vet. Med. Praha., 52, 527–539 (2007) [CrossRef] [Google Scholar]
- R.L. Singh, P.K. Singh, R.P. Singh, Enzymatic decolorization and degradation of azo dyes – a review. Int Biodeterior Biodegrad 104: 21–31 (2015) [CrossRef] [Google Scholar]
- R. L. Singh, R. P. Singh eds, Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future, Applied Environmental Science and Engineering for a Sustainable Future, https://doi.org/10.1007/978-981-13-1468-18 (2018) [Google Scholar]
- M. Rajasimman, S. V. Babu, N. Rajamohan, Biodegradation of textile dyeing industry wastewater using modified anaerobic sequential batch reactor–Start-up, parameter optimization and performance analysis. J. Taiwan. Inst. Chem., 72, 171–181. https://doi.org/10.1016/j.jtice.2017.01.027 (2017) [CrossRef] [Google Scholar]
- M. B. Kurade, T. R. Waghmode, S. M. Patil, B. H. Jeon, S. P. Govindwar, Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chem. Eng. J., 307, 1026–1036 https://doi.org/10.1016/j.cej.2016.09.028 (2017) [CrossRef] [Google Scholar]
- K. S. Bharathi, S. T. Ramesh, Removal of dyes using agricultural waste as low-cost adsorbents: A review. Appl. Water Sci., 3, 773–790. https://doi.org/10.1007/s13201-013-0117-y (2013) [CrossRef] [Google Scholar]
- S. Barathi, C. Karthik, I.A. Padikasan, Biodegradation of textile dye Reactive Blue 160 by Bacillus firmus (Bacillaceae: Bacillales) and non-target toxicity screening of their degraded products. Toxicol. Rep. 7, 16–22 (2020) [CrossRef] [Google Scholar]
- H. Hayat, Q. Mahmood, A. Pervez, et al. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Sep. Purif. Technol. 154, 149-153. http://dx.doi.org/10.1016/j.seppur.2015.09.025 (2015) [CrossRef] [Google Scholar]
- R. H. Chandrakant, J. J. Ananda, V. P., Dipak, M. M. Naresh, B. P. Aniruddha, A critical review on textile wastewater treatments: Possible approaches Journal of Environmental Management 182, 351-366. http://dx.doi.org/10.1016/j.jenvman.2016.07.090 (2016) [CrossRef] [PubMed] [Google Scholar]
- S. P. Ekambaram, S. S. Perumal, U. Annamalai, Decolorization and biodegradation of remazol reactive dyes by Clostridium species. 3 Biotech., 6, 20. https://doi.org/10.1007/s13205-015-0335-0 (2016). [CrossRef] [PubMed] [Google Scholar]
- S. S. Babu, C. Mohandass, A. S. Vijayaraj, M. A Dhale, Detoxification and color removal of Congo Red by a novel Dietzia sp. (DTS26) –a microcosm approach. Ecotoxicol. Environ. Saf., 114, 52–60. https://doi.org/10.1016/j.ecoenv.2015.01.002 (2015) [CrossRef] [Google Scholar]
- N. Butani, J. Jobanputra, P. Bhatiya, R. Patel, Recent Biological Technologies for Textile Effluent Treatment, International Research Journal of Biological Sciences, 2(6),77-82 (2013) [Google Scholar]
- J. M. Morrison, G. H. John, Growth and physiology of Clostridium perfringens wild-type and DazoC knockout: An azo dye exposure study. Microbiol., 162, 330–338. https://doi.org/10.1099/mic.0.000212 (2016) [CrossRef] [PubMed] [Google Scholar]
- S. C. D. Sharma, Q. Sun, J. Li, Y. Wang, F. Suanon, J. Yang, C. P. Yu, Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2, 6-disulfonate and Fe3O4 nanoparticles. Int. Biodeter. Biodegradation., 112, 88–97. https://doi.org/10.1016/j.ibiod.2016.04.035 (2016) [CrossRef] [Google Scholar]
- K. Jain, V. Shah, D. Chapla, D. Madamwar, Decolorization and degradation of azo dye–Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J. Hazard. Mater., 213, 378–386. https://doi.org/10.1016/j.jhazmat.2012.02.010 (2012) [CrossRef] [Google Scholar]
- Kamaljit Singh, Sucharita Arora, Removal of Synthetic Textile Dyes From Wastewaters: A Critical Review on Present Treatment Technologies, Critical Reviews in Environmental Science and Technology, 41:9, 807-878, DOI: 10.1080/10643380903218376 (2011) [CrossRef] [Google Scholar]
- M. Sujata, C. Pankaj, N.B. Ram, Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches. Emerging and Eco-Friendly Approaches for Waste Management, https://doi.org/10.1007/978-981-10-8669-411 (2018) [Google Scholar]
- D. V. Prasad, Biodecolorization of Anthraquinone Textile (Acid Blue 25) dye by Klebsiella sp. Int. J. Rec. Scient. Res., 6, 3216–3222 (2015) [Google Scholar]
- Das, S. Mishra, Decolorization of Different Textile Azo Dyes using an Isolated Bacterium Enterococcus durans GM13. Int. J. Curr. Microbiol. App. Sci., 5, 676–686. https://doi.org/10.20546/ijcmas.2016.507.077 (2016) [CrossRef] [Google Scholar]
- R. G. Saratale, G. D. Saratale, S. P. Govindwar, D. S. Kim, Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies. J. Environ. Sci. Health., Part A, 50, 176–192. https://doi.org/10.1080/10934529.2014.975536 (2015) [CrossRef] [PubMed] [Google Scholar]
- Z. Ibrahim, M. F. M. Amin, A. Yahya, A. Aris, N. A. Umor, K. Muda, N. S. Sofian, Characterisation ofMicrobial Flocs Formed from Raw Textile Wastewater in Aerobic Biofilm Reactor (ABR), Water Sci. Technol. 60 (3), 683–688 (2009) [CrossRef] [PubMed] [Google Scholar]
- P. Rajaguru, K. Kalaiselvi, M. Palanivel, V. Subburam, Biodegradation of azo dyes of azo dyes in a sequential anaerobic-aerobic system. Appl. Microbiol. Biotechnol. 54, 268–273 (2000) [CrossRef] [PubMed] [Google Scholar]
- P.S, Rajat, K.S Pradeep, L.S Ram, Treatment and Recycling of Wastewater from Textile Industry. Applied Environmental Science and Engineering for a Sustainable Future 12:225–266 (2019) [Google Scholar]
- P.K Singh, R.L Singh, Bio-removal of azo dyes: a review. Int J Appl Sci Biotechnol 5(2):108–126 (2017) [CrossRef] [Google Scholar]
- P., Simphiwe, O.O. Ademola, P. Balakrishna, Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates. Molecules 17: 14260-14274 (2012) [CrossRef] [PubMed] [Google Scholar]
- R.G Saratale, G.D Saratale, J.S. Chang et al, Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138-157 (2011) [CrossRef] [Google Scholar]
- H. Wang, J.Q. Su, X.W. Zheng, Y. Tian, X.J. Xiong, T.L Zheng, Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int. Biodeterior. Biodegrad. 63, 395–399 (2009) [CrossRef] [Google Scholar]
- J. Wu, K.S. Kim, N.C. Sung, C.H. Kim, Y.C. Lee, Isolation and characterization of Schervanella oxeidensis WL-7 capable of decolorizing azo dye Reactive Black 5. J. Gen. Appl. Microbiol. 55, 51–55 (2009) [CrossRef] [PubMed] [Google Scholar]
- G. Kumar, M. Tripathi, S. K. Singh and J. K. Tiwari, Int. Biodeterior. Biodegrad., 74, 24–35 (2012) [CrossRef] [Google Scholar]
- S. B. Jadhav, S. S. Phugare, P. S. Patil and J. P. Jadhav, Int. Biodeterior. Biodegrad., 65, 733–743(2011) [CrossRef] [Google Scholar]
- I.O. Ola, A.K. Akintokun, I. Akpan, et al, Aerobic decolorization of two reactive azo dyes under varying carbon and nitrogen source by Bacillus cereus. Afr J Biotechnol 9:672–677 (2010) [CrossRef] [Google Scholar]
- D.P. Neha, R.S. Sanjeev, Decolourization of dye wastewater by microbial methods – A review. Indian Journal of Chemical Technology 25: 315-323 (2018) [Google Scholar]
- Olukanni, A. Osuntoki, G.O. Gbenle, Decolorization of azo dyes by strain of Micrococcus isolated from a reuse dump soil. J Biotechnol 8:442–448 (2009) [Google Scholar]
- L. Ayed, A. Mahdhi, A. Cheref, et al, Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277 (2011) [CrossRef] [Google Scholar]
- H. Wang, X.W. Zheng, J.Q. Su, et al., Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J. Hazard Mater 171, 654e659. http://dx.doi.org/10.1016/j.jhazmat.2009.06.050 (2009) [Google Scholar]
- C.R. Holkar, A.B. Pandit, D.V. Pinjari, Kinetics of biological decolorisation of anthraquinone based reactive blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresour. Technol. 173, 342e351. http://dx.doi.org/10.1016/j.biortech.2014.09.108 (2014) [CrossRef] [Google Scholar]
- L. Yu, W.W. Li, M.H. Lam et al, Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Appl Microbiol Biotechnol 95:255–262 (2012) [CrossRef] [PubMed] [Google Scholar]
- J.P. Jadhav, D.C. Kalyani, A.A. Telke, et al, Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals and toxicity from textile dye effluent. Bioresour Technol 101:165–173 (2010) [CrossRef] [PubMed] [Google Scholar]
- K. Jain, V. Shah, D. Chapla, D. Madamwar, Decolorization and degradation of azo dye e reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J. Hazard Mater 213e214, 378e386. http://dx.doi.org/10.1016/j.jhazmat.2012.02.010 (2012) [Google Scholar]
- Ruiz-Arias, C. Juarez-Ramirez, D. de los Cobos-Vasconcelos et al, Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multi stage packed-bed BAC reactor. Appl Biochem Biotechnol 162:1689–1707 (2010) [CrossRef] [PubMed] [Google Scholar]
- A.E. Adeniran, M.A. Oyelowo, Assessment of the eiciency of constructed wetland in paper mill wastewater treatment at the University of Lagos, Nigeria’. J Sustain Dev Environ Prot 7(1):11–18 (2012) [Google Scholar]
- C.S. Akratos, V.A. Tsihrintzis, Efect of temperature, HRT, vegetation and porous media on removal eiciency of pilot-scale horizontal subsurface low constructed wetlands. Ecol Eng 29(2):173–191 (2007) [CrossRef] [Google Scholar]
- Ramsar. The importance of wetland, retrieved from https://www.ramsar.org on 07/10/2020 (2020) [Google Scholar]
- United Nations Human settlement programme’ constructed wetlands manual (2008) [Google Scholar]
- Alenka Ojstrsek, Darinka Fakin, Danijel Vrhovsek, Residual dyebath purification using a system of constructed wetland. Dyes and Pigments 74 (2007) 503e507 (2007) [Google Scholar]
- Tjasˇa G. Bulc, Alenka Ojstrsˇek, The use of constructed wetland for dye-rich textile wastewater treatment. Journal of Hazardous Materials 155, 76–82 (2008) [CrossRef] [PubMed] [Google Scholar]
- H. Zahid, A. Muhammad, H.M. Mumtaz, M. Muhammad L. A. Samina Muhammad, Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Science of The Total Environment 645 966-973 (2018) [CrossRef] [Google Scholar]
- Soon-An Katsuhiro, U. Daisuke, I. Kazuaki. Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland. Journal of Hazardous Materials 165 696-703 (2009) [CrossRef] [PubMed] [Google Scholar]
- G. Kumar, P. Mongolla, J. Joseph, V. U. M. Sarma, Process Biochem., 47, 1388-1394 (2012) [CrossRef] [Google Scholar]
- M.S. Mahmoud, M.K.. Mostafa, S.A. Mohamed, N.A. Sobhy, M. Nasr, Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. J. Environ. Chem. Eng. 5 (1), 547–554. (2017) [CrossRef] [Google Scholar]
- H. Ali, Biodegradation of synthetic dyes—a review, Water Air Soil Pollution (2010) [Google Scholar]
- M. Zahmatkesh, F. Tabande, Ebrahimi S. Biodegradation of reactive orange 16 by Phanerochaete chrysosporium fungus: Application in a fluidized bed bioreactor, Iranian Journal of Environmental Health Science and engineering, 7(5), 385-390 (2010) [Google Scholar]
- F. Ghasemi, F. Tabandeh, B. Bambai, K.R.S. Sambasiva Rao, Decolorization of different azo dyes by Phanerochaete chrysosporium RP78 under optimal condition, International Journal of Environmental Science and Technology, 7(3), 457-464 (2010) [CrossRef] [Google Scholar]
- Gomaa, J.E. Linz, C.A. Reddy, Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium, World Journal of Microbiology & Biotechnology (2008) [Google Scholar]
- N. Enayatizamir, F. Tabandeh, Rodriguez-Couto. Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium. Bioresour Technol 102(22):10359–10362 (2011) [CrossRef] [PubMed] [Google Scholar]
- K. K. Lee, A. M. Kassim, H. K. Lee, The Effect of Nitrogen Supplementation on the Efficiency of Color and COD Removal by Malaysian White-Rot Fungi in Textile Dyeing Effluent, Water Sci. Technol. 50 (5), 73–77 (2004) [CrossRef] [Google Scholar]
- R.H. Chandrakant, J.J. Ananda, V.P. Dipak, A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management 182, 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090 (2016) [CrossRef] [PubMed] [Google Scholar]
- A. Anastasi, B. Parato, F. Spina, et al., Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol. 29, 38e45. http://dx.doi.org/10.1016/j.nbt.2011.08.006 (2011) [CrossRef] [Google Scholar]
- M. Husain, Q. Husain, Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit. Rev. Env. Sci. Technol. 38, 1e42 (2007) [CrossRef] [Google Scholar]
- D. Divakar, S.N. Poonam, Waste Management by Biological Approach Employing Natural Substrates and Microbial Agents for the Remediation of Dyes’Wastewater. Applied sciences, 10, 2958 (2020) [CrossRef] [Google Scholar]
- N. T. Joutey, W. Bahafid, H. Sayel, N. El Ghachtouli, Biodegradation: Involved microorganisms and genetically engineered microorganisms. In Biodegradation-life of science. InTech. 289-320 (2013) [Google Scholar]
- M. Cano, M. Solis, J. Diaz, A. Solis, O. Loera, M.M. Teutli, Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Afr. J. Biotechnol. 10, 12224e12231 (2011) [Google Scholar]
- N. Ali, A. Hameed, S. Ahmed, Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Braz. J. Microbiol. 41, 907e915 (2010) [Google Scholar]
- J.A. Majeau, S.K. Brar, R.D. Tyagi, Laccases for removal of recalcitrant and emerging pollutants. Bioresour. Technol. 101, 2331e2350 (2010) [CrossRef] [Google Scholar]
- S. R. Dave, T. L. Patel, D. R. Tipre, Bacterial degradation of azo dye containing wastes. In Microbial Degradation of Synthetic Dyes in Wastewaters. Springer International Publishing. 57–83 (2015) [CrossRef] [Google Scholar]
- J. Morrison, S. Dai, J. Ren, A. Taylor, M. Wilkerson, G. John, A. Xie, Structure and stability of an azoreductase with an FAD Cofactor from the strict anaerobe Clostridium perfringens. Protein. Pept. lett., 21, 523–534. https://doi.org/10.2174/092986652106140425120614 (2014) [CrossRef] [Google Scholar]
- M. Ramya, S. Iyappan, A. Manju, J. S. Jiffe, Biodegradation and decolorization of acid red by Acinetobacter radioresistens. J. Bioremed. Biodegrad., 1, 1–6 (2010) [Google Scholar]
- K. Pandey, V. Dubey, Biodegradation of azo dye Reactive Red BL by Alcaligenes sp. AA09. Int. J. Eng. Sci., 1, 54–60 (2012) [Google Scholar]
- Khan S, Malik A (2016) Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 62:220–232 [CrossRef] [PubMed] [Google Scholar]
- H. Pan, J. Feng, C.E. Cerniglia, Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. J Ind Microbiol Biotechnol 38:1729–1738 (2011) [CrossRef] [PubMed] [Google Scholar]
- P. Katarzyna, B. Lucyna, L. Stanislaw, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal 376:120597 (2019) [CrossRef] [Google Scholar]
- R. Khlifi, L. Belbahri, S. Woodward, M. Ellouz, A. Dhouib, S. Sayadi, T. Mechichi, Decolourization and detoxification of textile industry wastewater by the laccasemediator system, J. Hazard. Mater. 175 802–808, https://doi.org/10.1016/j.jhazmat.2009.10.079 (2010) [CrossRef] [Google Scholar]
- S. Chakraborty, B. Basak, S. Dutta, B. Bhunia, A. Dey, Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresource Technology; 147: 662–666 (2013) [CrossRef] [PubMed] [Google Scholar]
- S.P.U. Uma, K.B. Tarun B. Biswanath, Bioremediation and Detoxification Technology for Treatment of Dye(s) from Textile Effluent. Textile dyes and pigments. http://dx.doi.org/10.5772/62309 (2016) [Google Scholar]
- Bibi, H.N. Bhatti, Afr J Biotechnol, 11 7464 (2012) [Google Scholar]
- S. Ilyas, S. Sultan, A. Rehman, Afr J Biotechnol, 11 1542 (2012) [Google Scholar]
- M.B. Kurade, T.R. Waghmode, A.N. Kagalkar, S.P. Govindwar, Decolorization of textile industry effluent containing disperse dye Scarlet RR by a newly developed bacterial-yeast consortium BL-GG. Chem. Eng. J. 184, 33e41. http://dx.doi.org/10.1016/j.cej.2011.12.058 (2012) [CrossRef] [Google Scholar]
- S. D. Kalme, G.K, Parshetti, S. U. Jadhav, S. P. Govindwar, Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Biores. Technol. 98, 1405–1410 (2007) [CrossRef] [Google Scholar]
- R.L. Singh, R. Gupta, R.P. Singh, Microbial degradation of textile dyes for environmental safety. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 249–285 (2015) [Google Scholar]
- P. Hosseinzadeh, E. N. Mirts, T. D. Pfister, Y. G. Gao, C. Mayne, H. Robinson, Y. Lu, Enhancing Mn (II)-binding and manganese peroxidase activity in a designed cytochrome c peroxidase through fine-tuning secondary-sphere interactions. Biochem., 55,1494–1502. https://doi.org/10.1021/acs.biochem.5b01299 (2016) [CrossRef] [PubMed] [Google Scholar]
- P. Verma, D. Madamwar, World J Microbiol Biotechnol, 19-615(2003) [Google Scholar]
- D. Bholay, B. V. Borkhataria, P. U. Jadhav, K. S. Palekar, M. V. Dhalkari, P. M. Nalawade Univer, J Environ Res Technol, 2-58 (2012) [Google Scholar]
- S. K. Vishwakarma, M. P. Singh, A. K. Srivastava, V. K. Pandey, Azo dye (direct blue) decolorization by immobilized extracellular enzymes of Pleurotus species. Cell. Mol. Biol., 58, 21–25 (2012) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.