Open Access
Issue
E3S Web Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
Article Number 06005
Number of page(s) 16
Section Sustainable Construction Materials and Technologies
DOI https://doi.org/10.1051/e3sconf/202338906005
Published online 31 May 2023
  1. B. Östman, A. Frangi, White paper on fire resistance of timber structures (2014) [Google Scholar]
  2. B. Östman, et.al., Fire safety in timber buildings — Technical guideline for Europe, SP Report 2010:19. Stockholm, Sweden : SP Technical Research Institute of Sweden, (2010) [Google Scholar]
  3. E.N. Pokrovskaya, et.al., Fire and Explosion Safety 22(10), 40-45 (2013) [Google Scholar]
  4. T.Yu. Eremina, et.al., Journal of Physics: Conference Series 1425, 012099 (2019). DOI: 10.1088/1742-6596/1425/1/012099 [CrossRef] [Google Scholar]
  5. N.I. Konstantinova, et.al., Fibre Chemistry 51(2), 131–134 (2019). DOI: 10.1007/s10692-019-10058-9 [CrossRef] [Google Scholar]
  6. Modern tall wood buildings: opportunities for innovation. Minneapolis, Dovetail Partners Inc. (2016) [Google Scholar]
  7. I.R. Khasanov, et.al., Fire-prevention distances between buildings of wooden structures. In: Proceedings of XXVII International Scientific-and-Practical Conference “Actual Problems of Fire Safety”. Moscow, VNIIPO Publ.,part 1, pp. 367–375 (2015) [Google Scholar]
  8. A.R. Horrocks, D. Price, Fire Retardant Materials; Woodhead Publishing Limited (Cambridge, UK, 2001) [Google Scholar]
  9. O. Zybina, O. Babkin, Paint. Varn. Their Appl. 3, 44–47 (2018) [Google Scholar]
  10. J.Q. Wang, W.K. Chow, J. Appl. Polym. Sci. 97, 366–376 (2005) [CrossRef] [Google Scholar]
  11. N. Khalturinsky, V. Krupkin, Fire Explos. Saf. 10, 33–41 (2011) [Google Scholar]
  12. L. Ruban, G. Zaikov, Int. J. Polym. Mater. 48, 295–310 (2001) [CrossRef] [Google Scholar]
  13. A. Ustinov, et.al., E3S Web Conf. 33, 02039 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  14. R. Aseeva, et.al., Springer Series in Optical Sciences, 290290 (2014) [Google Scholar]
  15. E. Pokrovskaya, Research of Bioproof Materials at Superficial Modification of Wood. IOP Conference Series: Materials Science and Engineering (2019) [Google Scholar]
  16. E. Pokrovskaya, Increasing the Strength of Destroyed Wood of Wooden Architecture Monuments by Surface Modification. MATEC Web of Conferences (2018) [Google Scholar]
  17. D.А. Hodgin, Mid-rise wood frame construction: a good idea or are we asking for trouble? Eighth Congress on Forensic Engineering (November 29–December 2, 2018, Austin, Texas). Reston, Virginia: American Society of Civil Engineers, p. 62-72 (2018). DOI: 10.1061/9780784482018.007 [Google Scholar]
  18. G. Wimmers, Nature Reviews Materials 2(12), 17051 (2017). DOI: 10.1038/natrevmats.2017.51 [CrossRef] [Google Scholar]
  19. J. Mohammadi, L. Ling, Practice Periodical on Structural Design and Construction 22(4), 04017014 (2017). DOI: 10.1061/(ASCE)SC.1943-5576.0000334 [CrossRef] [Google Scholar]
  20. Z. Pastori, et.al., Forestry Bulletin 21(4), 89-94 (2017). DOI: 10.18698/2542-1468-2017-4-89-94 [Google Scholar]
  21. Z. Pasztory, et.al., Energy and Buildings 49, 142–147 (2012). DOI: 10.1016/j.enbuild.2012.02.003 [CrossRef] [Google Scholar]
  22. M.H. Ramage, et.al., Renewable and Sustainable Energy Reviews 68, 333-359 (2017). DOI: 10.1016/j.rser.2016.09.107 [CrossRef] [Google Scholar]
  23. K. Kaushik, T. Tannert, Feasibility study of a novel tall concrete-wood hybrid system. Structures Congress 2017: Business, Professional Practice, Education, Research, and Disaster Management (April 6–8, 2017, Denver, Colorado). Reston, Virginia : American Society of Civil Engineers (2017). DOI: 10.1061/9780784480427.035 [Google Scholar]
  24. B. Östman, A. Frangi, White paper on fire resistance of timber structures. NIST.GCR.15-985 (2014) [Google Scholar]
  25. R. Gerard, et.al., Fire safety challenges of tall wood buildings. - San Francisco, CA: Arup North America Ltd.; Quincy, MA : Fire Protection Research Foundation (2013) [Google Scholar]
  26. D.J. Murphy, C.A.S. Hall, Annals of the New York Academy of Sciences 1185(1), 102–118 (2010). DOI: 10.1111/j.1749-6632.2009.05282.x [CrossRef] [PubMed] [Google Scholar]
  27. A.I. Bartlett, et.al., Fire Technology 55(1), 1-49 (2019). DOI: 10.1007/s10694-018-0787-y [CrossRef] [Google Scholar]
  28. M.J. Hurley, et.al., SFPE handbook of fire protection engineering, 5th edn. Springer, New York (2015) [Google Scholar]
  29. A. Anca-Couce, et.al., Comb. Flame 159, 1708–1719 (2012) [CrossRef] [Google Scholar]
  30. J. Suzuki, et.al., Fire Technology 52(4), 1015-1034 (2016). DOI: 10.1007/s10694-016-0578-2 [CrossRef] [Google Scholar]
  31. R.M. Aseeva, B.B. Serkov, A.B. Sivenkov, Fire Behavior and Fire Protection in Timber Buildings. Germany: Springer Series in Wood Science, Springer (2014) [CrossRef] [Google Scholar]
  32. H. Kawamoto, et. al., J. Anal. Appl. Pyrolysis 78, 328-336 (2007) [CrossRef] [Google Scholar]
  33. N. Boonmee, J.G. Quintiere, Proc. of the Combustion Institute 29(1), 289-296 (2002) [CrossRef] [Google Scholar]
  34. S.L. Zelinka, et.al., Performance of wood adhesives for cross laminated timber under elevated temperature. Paper MAT-O1-04. In: World conference of timber engineering, Seoul, Republic of Korea (2018) [Google Scholar]
  35. N.A. Boonmee, Proceedings of the 8-th International Symposium on Fire Safety Science, pp. 139-150 (2005) [Google Scholar]
  36. V. Babrauskas, J. of Fire Protection Eng. 12(3), 163-189 (2002) [CrossRef] [Google Scholar]
  37. Anon. ANSI/APA PRG 320: standard for performance rated cross-laminated timber. APA - The Engineered Wood Association, Tacoma (2018) [Google Scholar]
  38. G. Merryweather, M.J. Spearpoint, Flame and Materials 34(3), 109-136 (2010) [Google Scholar]
  39. R.H. White, M.A. Dietenberger, Fire Safety. Wood Handbook - Wood as an Engineering Material, US Department of Agriculture, Forest Products Laboratory, Ch. 17 (2002) [Google Scholar]
  40. R.M. Aseeva, et.al., Heat and smoke release at the combustion of the different wood varieties. Fire science and technology 6-th Asia - Okeania symposium Daegu, Korea, Korean Institute of Fire Science and Engineering, March 17 (Wed) - 20 (Sat), p. 203-211 (2004) [Google Scholar]
  41. M. Green, J. Karsh, TALL WOOD - the case for tall wood buildings. Report prepared for the Canadian wood (2012) [Google Scholar]
  42. R.E. Lyon, J.G. Quintiere, Combustion and Flame 151, 551-559 (2007) [CrossRef] [Google Scholar]
  43. M. Mohammad, et.al., Wood Des Focus 22, 3–12 (2012) [Google Scholar]
  44. J. Su, et.al., Fire safety challenges of tall wood buildings phase 2: task 2 & 3 cross laminated timber compartment fire tests, fire protection research foundation, Quincy, MA U.S. Energy Information Administration (EIA) (s.d.) Consulté 22 novembre 2019, à l’adresse (2018) [Google Scholar]
  45. G. Simoes, et.al., Proc. Combust. Inst. 36(2), 2235–2242 (2017) [CrossRef] [Google Scholar]
  46. A.F. Corbetta, et. al., Energy Fuels 28, 3884–3898(2014) [CrossRef] [Google Scholar]
  47. C. Di Blasi, et.al., Comb. Flame 124, 165–177 (2001) [CrossRef] [Google Scholar]
  48. Y. Haseli, et.al., Biores. Technol. 102(20), 9772–9782 (2011) [CrossRef] [Google Scholar]
  49. M. Janssens, Development of a fire performance assessment methodology for qualifying cross-laminated timber adhesives. SwRI Project No. 01.23086.01.001a, Southwest Research Institute, San Antonio, TX (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.